Apprentice Program

Miklos Abert Notes taken by Matt Holden

July 10, 2006

Lemma 1. A polynomial of degree n is uniquely determined by its value at n+1 distinct points x_0, \ldots, x_n .

Proof. Suppose f and g are degree n polynomials such that $f(x_i) = g(x_i)$ for i = 0, ..., n. Then f - g has degree $\leq n$ but it has n + 1 roots (the x_i), so it must be the zero polynomial, hence $f \equiv g$.

We now consider the question of the *existence* of a polynomial attaining prescribed values at the n+1 points. Suppose we are given scalars y_0, \ldots, y_n and we want to find a polynomial f such that $f(x_i) = y_i$ for all i. For each fixed $i = 0, \ldots, n$, notice that the polynomial

$$f_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

satisfies $f_i(x_i) = 1$ and $f_i(x_j) = 0$ for all $j \neq i$. Thus, we consider the polynomial

$$f(x) = \sum_{i=0}^{n} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j},$$
(1)

which clearly satisfies $f(x_i) = y_i$ for all *i*. Since we already proved uniqueness, we have the following:

Theorem 2 (Lagrange interpolation). Given any n + 1 distinct points x_0, \ldots, x_n and any scalars y_0, \ldots, y_n , there exists a unique polynomial f (given by the formula (1)) such that $f(x_i) = y_i$ for all i.

The characteristic polynomial

If $M \in M_n(k)$ then the $n^2 + 1$ matrices I, M, \ldots, M^{n^2} cannot be linearly independent over k, since $M_n(k)$ is a k-vector space of dimension n^2 . Thus, we can find scalars $a_0, \ldots, a_{n^2} \in k$ such that

$$a_0 I + a_1 M + \dots + a_{n^2} M^{n^2} = 0.$$

This shows that every $n \times n$ matrix M is a root of a polynomial of degree at most n^2 . Our next goal is to prove the following:

Claim 3. Every $M \in M_n(k)$ is a root of a degree n polynomial.

To see that this bound is sharp, consider the matrix with 1s on the first super-diagonal:

$$M = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & & \ddots & 1 \\ 0 & \cdots & & 0 \end{pmatrix}$$

For k = 1, ..., n - 1, M^k is the matrix with 1s on the kth super-diagonal (you should check this), and $M^n = 0$. It follows that $I, M, ..., M^{n-1}$ are linearly independent (over k), so M cannot satisfy a polynomial of degree < n. Thus, M is a root of the polynomial x^n , but no polynomial of lower degree, so the bound in the claim is sharp.

Definition 4. The *characteristic polynomial* of a matrix $M \in M_n(k)$ is

$$\operatorname{ch}_M(\lambda) = \det(\lambda I - M),$$

which is a degree n polynomial in the variable λ , with coefficients in k.

Notice that $ch_M(\lambda)$ has leading coefficient 1, so we can write it as

$$\operatorname{ch}_M(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0.$$
⁽²⁾

Claim 3 will follow from the following important result:

Theorem 5 (Cayley-Hamilton). *M* is a root of $ch_M(\lambda)$.

Before beginning the proof, recall how we defined the quasi-inverse of a square matrix. Given a matrix A, we define a new matrix B by setting $b_{ij} = (-1)^{i+j} \det A_{ji}$, and we showed that $AB = (\det A)I$. In particular, $B = (\det A)A^{-1}$ if A is invertible.

Proof of theorem. Define a matrix B by setting

$$b_{ij} = (-1)^{i+j} \det \left[(\lambda I - M)_{ji} \right],$$

and notice that

$$B(\lambda I - M) = \det(\lambda I - M) \cdot I = \operatorname{ch}_{M}(\lambda) \cdot I.$$
(3)

Now, B is a matrix of polynomials of degree $\leq n - 1$, so we can write

$$B = B_{n-1}\lambda^{n-1} + \dots + B_1\lambda + B_0, \tag{4}$$

where B_{n-1}, \ldots, B_0 are constant scalar matrices. (This is just the natural isomorphism $M_n(k[\lambda]) \cong M_n(k)[\lambda]$: "a polynomial matrix equals a matrix polynomial".) Substituting (2) and (4) into (3) yields

$$(B_{n-1}\lambda^{n-1} + \dots + B_1\lambda + B_0)(\lambda I - M) = (\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0)I$$

Equating coefficients of λ gives a system of n + 1 equations:

$$-B_0M = a_0I$$
$$-B_1M + B_0 = a_1I$$
$$\vdots$$
$$-B_kM + B_{k-1} = a_kI$$
$$\vdots$$
$$-B_{n-1}M + B_{n-2} = a_{n-1}I$$
$$B_{n-1} = I.$$

Multiply these equations by I, M, \ldots, M^n , respectively, and add them. The RHS of this sum equals $a_0I + a_1M + \ldots a_{n-1}M^{n-1} + M^n = ch_M(M)$, while the LHS telescopes to zero:

$$(-B_0M) + (-B_1M + B_0) \cdot M + \dots + B_{n-1} \cdot M^n = 0,$$

hence $ch_M(M) = 0$, as claimed.

Definition 6. Let $\phi \in \text{Hom}(V, V)$ be a linear transformation of a vector space V. We say that $0 \neq v \in V$ is an *eigenvector* of ϕ if $\phi(v) = \lambda v$ for some $\lambda \in k$. We then say that λ is the *eigenvalue* associated to v.

Given any $\lambda \in k$, we define $V_{\lambda} = \{v \in V : \phi(v) = \lambda v\}$. It is easy to check that V_{λ} is a subspace of V. It is a nonzero subspace iff λ is an eigenvalue of ϕ , in which case we call V_{λ} the *eigenspace* associated to λ . Finally, notice that if $\lambda \neq \mu$ then $V_{\lambda} \cap V_{\mu} = \{0\}$.