Apprentice Program

Miklos Abert
Notes taken by Matt Holden

July 10, 2006

Lemma 1. A polynomial of degree n is uniquely determined by its value at $n+1$ distinct points x_{0}, \ldots, x_{n}.

Proof. Suppose f and g are degree n polynomials such that $f\left(x_{i}\right)=g\left(x_{i}\right)$ for $i=0, \ldots, n$. Then $f-g$ has degree $\leq n$ but it has $n+1$ roots (the x_{i}), so it must be the zero polynomial, hence $f \equiv g$.

We now consider the question of the existence of a polynomial attaining prescribed values at the $n+1$ points. Suppose we are given scalars y_{0}, \ldots, y_{n} and we want to find a polynomial f such that $f\left(x_{i}\right)=y_{i}$ for all i. For each fixed $i=0, \ldots, n$, notice that the polynomial

$$
f_{i}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

satisfies $f_{i}\left(x_{i}\right)=1$ and $f_{i}\left(x_{j}\right)=0$ for all $j \neq i$. Thus, we consider the polynomial

$$
\begin{equation*}
f(x)=\sum_{i=0}^{n} y_{i} \prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}, \tag{1}
\end{equation*}
$$

which clearly satisfies $f\left(x_{i}\right)=y_{i}$ for all i. Since we already proved uniqueness, we have the following:

Theorem 2 (Lagrange interpolation). Given any $n+1$ distinct points x_{0}, \ldots, x_{n} and any scalars y_{0}, \ldots, y_{n}, there exists a unique polynomial f (given by the formula (1)) such that $f\left(x_{i}\right)=y_{i}$ for all i.

The characteristic polynomial

If $M \in M_{n}(k)$ then the $n^{2}+1$ matrices $I, M, \ldots, M^{n^{2}}$ cannot be linearly independent over k, since $M_{n}(k)$ is a k-vector space of dimension n^{2}. Thus, we can find scalars $a_{0}, \ldots, a_{n^{2}} \in k$ such that

$$
a_{0} I+a_{1} M+\cdots+a_{n^{2}} M^{n^{2}}=0 .
$$

This shows that every $n \times n$ matrix M is a root of a polynomial of degree at most n^{2}. Our next goal is to prove the following:

Claim 3. Every $M \in M_{n}(k)$ is a root of a degree n polynomial.
To see that this bound is sharp, consider the matrix with 1 s on the first super-diagonal:

$$
M=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & \ddots & \ddots & 0 \\
\vdots & & \ddots & 1 \\
0 & \cdots & & 0
\end{array}\right)
$$

For $k=1, \ldots, n-1, M^{k}$ is the matrix with 1 s on the k th super-diagonal (you should check this), and $M^{n}=0$. It follows that I, M, \ldots, M^{n-1} are linearly independent (over k), so M cannot satisfy a polynomial of degree $<n$. Thus, M is a root of the polynomial x^{n}, but no polynomial of lower degree, so the bound in the claim is sharp.

Definition 4. The characteristic polynomial of a matrix $M \in M_{n}(k)$ is

$$
\operatorname{ch}_{M}(\lambda)=\operatorname{det}(\lambda I-M)
$$

which is a degree n polynomial in the variable λ, with coefficients in k.
Notice that $\operatorname{ch}_{M}(\lambda)$ has leading coefficient 1 , so we can write it as

$$
\begin{equation*}
\operatorname{ch}_{M}(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0} . \tag{2}
\end{equation*}
$$

Claim 3 will follow from the following important result:
Theorem 5 (Cayley-Hamilton). M is a root of $\operatorname{ch}_{M}(\lambda)$.

Before beginning the proof, recall how we defined the quasi-inverse of a square matrix. Given a matrix A, we define a new matrix B by setting $b_{i j}=(-1)^{i+j} \operatorname{det} A_{j i}$, and we showed that $A B=(\operatorname{det} A) I$. In particular, $B=(\operatorname{det} A) A^{-1}$ if A is invertible.

Proof of theorem. Define a matrix B by setting

$$
b_{i j}=(-1)^{i+j} \operatorname{det}\left[(\lambda I-M)_{j i}\right]
$$

and notice that

$$
\begin{equation*}
B(\lambda I-M)=\operatorname{det}(\lambda I-M) \cdot I=\operatorname{ch}_{M}(\lambda) \cdot I . \tag{3}
\end{equation*}
$$

Now, B is a matrix of polynomials of degree $\leq n-1$, so we can write

$$
\begin{equation*}
B=B_{n-1} \lambda^{n-1}+\cdots+B_{1} \lambda+B_{0} \tag{4}
\end{equation*}
$$

where B_{n-1}, \ldots, B_{0} are constant scalar matrices. (This is just the natural isomorphism $M_{n}(k[\lambda]) \cong M_{n}(k)[\lambda]$: "a polynomial matrix equals a matrix polynomial".) Substituting (2) and (4) into (3) yields
$\left(B_{n-1} \lambda^{n-1}+\cdots+B_{1} \lambda+B_{0}\right)(\lambda I-M)=\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}\right) I$.
Equating coefficients of λ gives a system of $n+1$ equations:

$$
\begin{aligned}
&-B_{0} M=a_{0} I \\
&-B_{1} M+B_{0}=a_{1} I \\
& \vdots \\
&-B_{k} M+B_{k-1}=a_{k} I \\
& \vdots \\
&-B_{n-1} M+B_{n-2}=a_{n-1} I \\
& B_{n-1}=I .
\end{aligned}
$$

Multiply these equations by I, M, \ldots, M^{n}, respectively, and add them. The RHS of this sum equals $a_{0} I+a_{1} M+\ldots a_{n-1} M^{n-1}+M^{n}=\operatorname{ch}_{M}(M)$, while the LHS telescopes to zero:

$$
\left(-B_{0} M\right)+\left(-B_{1} M+B_{0}\right) \cdot M+\cdots+B_{n-1} \cdot M^{n}=0,
$$

hence $\operatorname{ch}_{M}(M)=0$, as claimed.

Definition 6. Let $\phi \in \operatorname{Hom}(V, V)$ be a linear transformation of a vector space V. We say that $0 \neq v \in V$ is an eigenvector of ϕ if $\phi(v)=\lambda v$ for some $\lambda \in k$. We then say that λ is the eigenvalue associated to v.

Given any $\lambda \in k$, we define $V_{\lambda}=\{v \in V: \phi(v)=\lambda v\}$. It is easy to check that V_{λ} is a subspace of V. It is a nonzero subspace iff λ is an eigenvalue of ϕ, in which case we call V_{λ} the eigenspace associated to λ. Finally, notice that if $\lambda \neq \mu$ then $V_{\lambda} \cap V_{\mu}=\{0\}$.

