15 Communication Complexity (continued)

15.1 Randomized and Distributional Complexity

Let \(f : \{0,1\}^{2n} \rightarrow \{0,1\} \), and define
\[
C(f) = \min_{\mathcal{P}} \max_{(x,y)} |\mathcal{P}(x,y)|, \tag{15.1.1}
\]
where \(\mathcal{P} \) is over all protocols that compute \(f \), and \(|\mathcal{P}(x,y)| \) is the message string. Note that \(C(f) \leq n \).

Correction: the theorem from last time that states \(C(\beta) \geq \log \text{rk}(M_f) \) where \(M_f = (f(x,y))_{2^n \times 2^n} \) was incorrectly attributed to Yau last time: the correct attribution is Mehlhorn-Schmidt.

The Randomized Communication Complexity of \(f \) is denoted \(C_\varepsilon(f) \), and is defined by the same equation (15.1.1), except that \(\mathcal{P} \) ranges over protocols that compute \(f \) with some error allowed, of probability \(\leq \varepsilon \). More precisely, we require that \((\forall x, y)(\text{Pr}(\text{error}) \leq \varepsilon)\).

Distributional Complexity: The randomization over inputs
\[
D_{\varepsilon,\mu}(f) = \min \left\{ C(f^*) \left| \Pr_\mu(f^*(x,y) \neq f(x,y)) \leq \varepsilon \right. \right\} \tag{15.1.2}
\]

Lemma 15.1.1. \(\forall \mu, R_{\varepsilon}(F) \geq D_{\varepsilon,\mu}(F) \).
In fact, \(R_\varepsilon(f) = \max \mu \) \(D_{\varepsilon,\mu}(f) =: D_\varepsilon(f) \). (We won’t use this.)
\[
IP_\varepsilon(x, y) = \sum x_i y_i \pmod{2}.
\]

Theorem 15.1.2. \(C_\varepsilon(IP_X) = \Omega(n) \) (i.e. \(\geq c \cdot n \)).

Let’s switch notation: let \(f : \Omega \rightarrow \{\pm 1\} \), with \(S \subset \Omega \). The (normalized) discrepancy of \(f \) over \(S \) is
\[
\Delta(f, S) = \frac{\left| \sum_{x \in S} f(x) \right|}{|\Omega|}.
\]

If \(f \) is homogeneous on \(S \) then \(\Delta(f, S) = \frac{|S|}{|\Omega|} \).

The discrepancy of \(f \) is \(\Delta(f) = \max_{S \in \mathcal{F}} \Delta(f, S) \) where \(\mathcal{F} \) is a particular family of subsets of \(\Omega \).

Now, recall that our domain is \(\Omega = \{0, 1\}^n \times \{0, 1\}^n \). We wanted to prove the

Theorem 15.1.3.
\[
C_\varepsilon(f) \geq \log \left(\frac{1 - 2\varepsilon}{\Delta_{\Box}(f)} \right),
\]
where the \(\Box \) is over all rectangles (in the big \(2^n \times 2^n \)-rectangle of inputs). (note the numerator was originally \(\frac{1}{2} - \varepsilon \) and was then changed.)

To bound \(C_\varepsilon \) from below, we estimate \(D_{\varepsilon,\mu} \) with respect to the uniform distribution \(\mu \). Let \(s := D_{\varepsilon,\mu} \).

Now, \(\Delta := \Delta_{\Box}(f) \), i.e., for every rectangle: say, label the rectangles \(R_j \), of sizes \(k_j \times \ell_j \); one has
\[
\left| \sum_{R_j} f(x, y) \right| \leq \Delta \cdot 2^{2n}.
\]

So \(P \) is a deterministic protocol with \(\leq \varepsilon \) fraction of error, and the message length is \(s \). If we have a cover by \(2^s \) rectangles, homogeneous with respect to a fraction \(f^* \approx \varepsilon f \), let’s say each \(R_j \) has \(a_j \) 1’s and \(b_j \) -1’s, with \(a_j \geq b_j \): the number of errors is \(b_j \).
Now $0 \leq a_j - b_j \leq \Delta \cdot 2^{2n}$, and $a_j + b_j = k_j \ell_j$. So, adding these, $2b_j \geq k_j \ell_j - \Delta 2^{2n}$.

So

\[2\varepsilon 2^{2n} \geq 2 \cdot \text{total error} \geq 2^{2n} - 2^s \cdot \Delta \cdot 2^{2n}, \quad (15.1.5) \]

\[2\varepsilon \geq 1 - 2^s \Delta \quad (15.1.6) \]

\[2^s \Delta \geq 1 - 2\varepsilon \quad (15.1.7) \]

\[2^s \geq \frac{1 - 2\varepsilon}{\Delta} \quad (15.1.8) \]

\[s \geq \log \frac{1 - 2\varepsilon}{\Delta}. \quad (15.1.9) \]

Now to complete the proof we need to learn about Hadamard matrices.

15.2 Hadamard Matrices

We have the following claim about the discrepancy of IP_x over rectangles:

Claim 15.2.1. ± 1-representation of IP_- matrix is Hadamard.

Definition 15.2.2. A $N \times N$-matrix is Hadamard if

1. every entry is ± 1

2. rows are orthogonal, i.e. $AA^T = N \cdot I = \begin{pmatrix} N & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & N \end{pmatrix}$

Exercises:

Exercise 15.2.3. $\text{rk}(A \otimes B) = \text{rk}(A) \cdot \text{rk}(b)$.

Exercise 15.2.4. If $k_1 = \ell_1$ and $k_2 = \ell_2$ and eigenvalues of A are $\lambda_1, \ldots, \lambda_{k_1}$ and of B are μ_1, \ldots, μ_{k_2} (full lists counting multiplicities over \mathbb{C}), then the eigenvalues of $A \otimes B$ are $\lambda_i \mu_j$.

Exercise 15.2.5. If A, B are Hadamard then $A \otimes B$ is Hadamard.

Exercise 15.2.6. $S_n := \bigotimes^n \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ is a $2^n \times 2^n$ Hadamard matrix. This is called the $2^n \times 2^n$ Sylvester matrix.
Exercise 15.2.7. Prove: if \exists an $N \times N$ Hadamard matrix then $N = 2$ or $4 \mid N$.

Conjecture 15.2.8. This is also sufficient: if $4 \mid N$ then there exists an $n \times N$ Hadamard matrix.

Exercise 15.2.9. If $p \equiv 1 \pmod{4}$ is prime, then there exists a Hadamard matrix of size $(p-1) \times (p-1)$. Hint: use the quadratic character (Legendre symbol) modulo p.

One question is, what is the density of Hadamard numbers (numbers for which a Hadamard matrix of that size exists).

Bad fact: the density of the currently known Hadamard numbers is 0.

Here, $\text{density}(A) := \lim_{n \to \infty} \frac{|A \cap \{1, \ldots, n\}|}{n}$. But the conjectural (15.2.8) density is $1/4$.

Lemma 15.2.10. (J.H. Lindsey’s Lemma): If H is an $N \times N$ Hadamard matrix and R is a $k \times \ell$ rectangle in H, then

$$\left| \sum_{R} h_{ij} \right| \leq \sqrt{k\ell N}, \quad k, \ell \leq N. \quad (15.2.1)$$

Corollary 15.2.11.

$$\Delta \leq \frac{N^{3/2}}{N^2} = \frac{1}{\sqrt{N}} \quad (15.2.2)$$

Now, $C_\varepsilon(f) \geq \log_2 \frac{1-2\varepsilon}{2^{2n}} = \log_2(1-2\varepsilon) + \frac{n}{2} = \Omega(n)$, assuming that $M_f(\pm1)$ is Hadamard.

We have that $M_n = ((-1)^{|A \cap B|})_{2^n \times 2^n}$ for $A, B \subset \{1, \ldots, n\}$. Note that $|A \cap B|$ can be reduced modulo two here because it’s an exponent of -1.

Claim 15.2.12.

$$M_{n+1} = \begin{pmatrix} M_n & M_n \\ -M_n & M_n \end{pmatrix}. \quad (15.2.3)$$

Recall from Exercises 15.2.6 that $\otimes^n \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = S_n$ is called the $2^n \times 2^n$ Sylvester matrix.

Claim 15.2.13. M_n is Hadamard.
Exercise 15.2.14. (a hint for Exercise 15.2.6) \[\sum_{A} (-1)^{|A \cap B_1|} \cdot (-1)^{|A \cap B_2|} = \delta_{B_1,B_2}. \]

Now, let’s end with some magic. First note that if \(A \) is orthogonal and \(x \in \mathbb{R}^n \), then \(\|Ax\| = \|x\| \). Now, we have \((AB)^T = B^T A^T\), so \((AA^T)^T = AA^T\).

Let’s suppose that \(AA^T = I \). Does it follow that \(A^T A = I \)? In general it is not obvious that if \(AB = I \) then \(BA = I \). To do this we really only need to prove that the existence of a right inverse is equivalent to the existence of a left inverse. This is because, in a semigroup, \(ab = 1 \) and \(ca = 1 \) imply \(b = c \). Existence of a right inverse is the same as the rows being linearly independent, while the existence of a left inverse is the same as the columns being linearly independent. So if the matrix is square, having a right inverse is equivalent to having a left inverse (for finite-dimensional matrices). Example: multiplying by \(x \) or differentiating in the space of polynomials in \(x \).

Finally, we need to prove Lindsey’s lemma:

Proof. (Lindsey’s Lemma): We will need Cauchy-Schwarz (note that Schwarz has a “c” and no “t” so it’s a German Schwarz):

Theorem 15.2.15. (Cauchy-Schwarz): \[|x \cdot y| \leq \|x\| \cdot \|y\|. \]

We know that \(\|Ax\|^2 = (Ax)^T(Ax) = x^T A^T A x = x^T x = \|x\|^2 \).

Now we want to know the sum of the entries that fall in a rectangle \(R \), i.e. \(\sum_{R} h_{i,j} = a^T H b \), where \(a \) has a 1 in the entries corresponding to the rows used by \(R \) and \(b \) has a 1 in the entries corresponding to the columns used by \(R \) (we put \(a \) and \(b \) as column vectors). So \(|a^T H b| \leq \|a^T\| \cdot \|H b\| = \sqrt{k} \|H b\| \).

Now \(HH^T = N \cdot I \), and \(\frac{1}{\sqrt{N}} H \) is orthogonal. So \(\| \left(\frac{1}{\sqrt{N}} H \right) b \| = \| b \| \) and \(\| H b \| = \sqrt{N} \| b \| = \sqrt{N} \). This is a magical proof: note that 99% of the magic is in the Cauchy-Schwarz.

This completes the proof of Theorem 15.1.3.

15.3 Indian Head Poker

Let’s move on to something different: recall Indian Head Poker: three people each put a card on their respective foreheads so that they can see the other two cards but not their own. Then they bet on whose card will win. So we have a function \(f(x, y, z) \), with \(C(f) \leq n \), which has to do with the cards
(e.g. is someone’s card higher than the other, etc.). Let’s find an explicit function \(f \) such that \(C(f) = \Omega(n) \). Finding explicit functions is usually what people are most interested in (random functions cannot be computed).

Suppose \(f : \{0, 1\}^{3n} \to \{0, 1\} \). We want to find a function that’s difficult to compute: one is the Generalized Inner Product (GIP): \(GIP(x, y, z) = \sum x_i y_i z_i \mod 2 \).

What other examples are there? For two players one has

\[
\text{Exercise 15.3.1.} \quad C_\epsilon \left(\left(\frac{x + y}{p} \right) \right) = \Omega(n),
\]

where the \((-)\) here is the Legendre symbol.

\[\text{Theorem 15.3.2.} \quad C_\epsilon \left(\left(\frac{x + y + z}{p} \right) \right) = \Omega(n). \]

This has to do with the quadratic character. One also has \(C_\epsilon(GIP) = \Omega(n) \).

For \(k \) players,

\[
C(GIP_k) = \Omega \left(\frac{n}{4^k} \right),
\]

(15.3.2)

and

\[
C(QCH) = \Omega \left(\frac{n}{2^k} \right).
\]

(15.3.3)

Note that for both of these, they are only difficult to communicate if \(k \ll \log(n) \). We don’t know any functions that are difficult to compute if \(k \sim \log(n) \).

\[\text{Question 15.3.3.} \ (\text{Open question}): \text{Find an explicit } f \text{ with } C_k(f) > (\log n)^2 \text{ with } k > \log n \text{ players.} \]

Note: the proof of \(C(GIP_k) \) involves repeated Cauchy-Schwarz. The proof of \(C(QCH) \) is an inductive proof using Cauchy-Schwarz whose base case uses Weil’s character estimates.