9.1 Character of a group

Definition 9.1.1. A character of a group G is a homomorphism $\chi : G \to \mathbb{T} = \{ z \in \mathbb{C} \mid |z| = 1 \}$ (homomorphism means $\chi(ab) = \chi(a)\chi(b)$).

Now, let F be a finite field. We can define two types of characters:

Definition 9.1.2. A multiplicative character of F is a character of the group $F^\times = F \setminus \{0\}$ under multiplication. That is, $\chi : F^\times \to \mathbb{T}$. We formally set $\chi(0) = 0$ to extend to $F \to \mathbb{T} \cup \{0\}$.

Definition 9.1.3. An additive character of F is a character of the additive group F, i.e. a map $\chi : (F, +) \to \mathbb{T}$, with $\chi(a + b) = \chi(a)\chi(b)$.

Now, let F_q denote the field of order $q = p^k$. We can define it by $F_q := F_p[x]/(f)$, where f is any irreducible polynomial of degree k.

We know that F_q^\times is a cyclic group of order $q - 1$, and is generated by some $g \in F_q^\times$ (in other word $F_q^\times = \langle g \rangle$). That is, $g^{q-1} = 1$ and no smaller positive power of g is 1. We have $(\chi(g))^{q-1} = \chi(g^{q-1}) = 1$ for any multiplicative character g. So characters correspond to a choice of primitive $(q - 1)$-st root of unity ω, so that $\chi(g) = \omega$. Then, for any element $x = g^\ell \in F_q^\times$, we have $\chi(x) = \chi(g^\ell) = \omega^\ell$.

In general, we have

Definition 9.1.4. The order of a multiplicative character χ is the smallest positive integer m such that $\chi^m(x) = 1$ for all $x \in F_q^\times$. A quadratic character is a character of order 2.

Exercise 9.1.5. If q is an odd prime number then F_q^\times has a unique quadratic character. (Hint: $\chi(g) = -1$ and $\chi(g^\ell) = (-1)^\ell$.)

Let us return our attention to F_p^\times for the moment, where p is prime. We may define the Legendre symbol as follows: Let χ be the unique quadratic character. For $a \in F_p^\times$, set $\left(\frac{a}{p}\right) = \chi(a)$.

1
We turn our attention back to a general field \mathbb{F}_q with $q = p^k$. André Weil’s character sum estimate is then given as follows:

Theorem 9.1.6. (André Weil’s character sum estimate) Let $\chi : \mathbb{F}_q^\times \to \mathbb{T}, \chi(0) = 0$, and let f be a polynomial. Then

$$\left| \sum_{x \in \mathbb{F}_q} \chi(f(x)) \right| < (d - 1)\sqrt{q}, \quad (9.1.1)$$

where $d = \deg f, t = \text{order of } \chi$, unless $f = cg^t$.

9.2 Paley Tournament

Recall the Paley tournament: We have $p \equiv -1 \pmod{4}$, i.e. $\left(\frac{-1}{p}\right) = -1$. We have $V = \{0, 1, \ldots, p-1\}$ and $i \to j$ if $\left(\frac{i-j}{p}\right) = 1$.

If there is a directed edge from vertex i to vertex j then we say i beats j. If i beats all the elements in a set A then we say $x \to A$.

Theorem 9.2.1. (\forall k)(\exists p_0) such that if $p > p_0$ then the Paley tournament is k-embarrassing, that is, $\forall A \subset V, |A| = k$, there exists x such that x beats all the vertices in A

Proof. Let $A = \{a_1, \ldots, a_k\}$, and $\chi(a) = \left(\frac{a}{p}\right)$. Let $N = \#\{x \mid \chi(x - a_1) = \cdots = \chi(x - a_k) = 1\}$. We “expect” $N \approx \frac{p}{2^k}$. Now,

$$\frac{1}{2^k} \sum_{x \in \mathbb{F}_p} \prod_{i=1}^k (\chi(x - a_i) + 1) = N + \frac{\mu}{2}, \quad (9.2.1)$$

with $\mu = 0$ or 1. If $x \to A$, it contributes 1 to the sum. If x is beaten by anyone in A, it contributes 0. If $x \in A$ and beats $A \setminus \{x\}$, it’s contribution is $2^{k-1}/2^k = \frac{1}{2}$.

Now, we have

$$2^k(N + \frac{\mu}{2}) = \sum_{x \in \mathbb{F}_p} \prod_{i=1}^k (\chi(x - a_i) + 1) = \sum_{x \in \mathbb{F}_p} \sum_{I \subset \{1, \ldots, k\}} \prod_{i \in I} \chi(x - a_i). \quad (9.2.2)$$

This is because

$$\prod_{i=1}^k (1 + z_i) = \sum_{I \subset \{1, \ldots, k\}} \prod_{i \in I} z_i, \quad (9.2.3)$$

To simplify (9.2.2), set $f_I(x) := \prod_{i \in I} \chi(x - a_i)$, with $f_{\emptyset}(x) := 1$. Then (9.2.2) becomes

$$\sum_{I \subset \{1, \ldots, k\}} \sum_{x \in \mathbb{F}_p} \chi(f_I(x)) = p + R, \quad (9.2.4)$$

where p comes from $I = \emptyset$, and R comes from $I \neq \emptyset$. We have

$$|R| = \left| \sum_{\emptyset \neq I \subset \{1, \ldots, k\}} \sum_{x \in \mathbb{F}_p} \chi(f_I(x)) \right| \leq \sum_{\emptyset \neq I \subset \{1, \ldots, k\}} \left| \sum_{x \in \mathbb{F}_p} \chi(f_I(x)) \right| < k2^k \sqrt{p}. \quad (9.2.5)$$
The last inequality uses “Weil’s Character Sum Estimate,” because the inside sum is less than \((|I| - 1)\sqrt{p} < k\sqrt{p}\). We used the triangle inequality, \(|a + b| \leq |a| + |b|\) in the first inequality.

Now, \(w^k(N + \frac{\mu}{2}) = p + R\), and \(|2^k(N + \frac{\mu}{2}) - p| < k2^k\sqrt{p}\). So

\[
2^k(N + \frac{\mu}{2}) > p - k2^k\sqrt{p}
\]

\[\implies 2^kN > p - 2^k(k\sqrt{p} + \frac{1}{2})\]

Hence \(2^kN\) will be > 0 if \(p > 2^k(k\sqrt{p} + \frac{1}{2})\). Hence the Paley tournament is \(k\)-embarassing is

\[p > k^22^k.\] \(\tag{9.2.6}\)

\[\square\]

9.3 Chromatic Number and Girth of a graph

Let us consider graphs that are not \(3^k\)-colorable but does not contain any \(K_3\) (a \(K_3\) would immediately require all three have different colors).

Let’s consider **Kneser’s graph**: \(K(r, s)\) for \(r \geq 2s + 1\), has \(\binom{r}{s}\) vertices, labeled by \(s\)-subsets of \(\{1, \ldots, r\}\). For any \(A \subset \{1, \ldots, r\}\), \(|A| = s\), call the associated vertex \(v_A\). Then, we have \(v_A \sim v_B\) if \(A \cap B = \emptyset\). This is a generalization of Peterson’s graph, which is the smallest case, \(K(5, 2)\).

Observation 9.3.1. \(\chi(K(r, s)) \leq r - 2s + 2\).

Proof. Take all \(s\)-subsets that contain the number 1: a large independent set of vertices. The number of such subsets is \(\binom{r}{s} - \binom{s-1}{s-1}\). Let’s color all of this #1. For the remaining sets, color 2 those sets that contain the number 2. Is the number of colors needed \(r\)? Well, once we get down to only \(2s - 1\) numbers left, then all \(s\)-subsets in those are independent: so we can stop there. That is, we only need to use \(r - 2s + 2\) colors: i.e. \(\chi(K(r, s)) \leq r - 2s + 2\). \(\square\)

In fact, Lovasz showed in 1980 that this is an equality: the chromatic number equals \(r - 2s + 2\).

Now when does Kneser’s graph not contain triangles? If \(r < 3s\) the Kneser’s graph has a triangle as then there are no 3 mutually disjoint subsets of size \(s\).

So for a Kneser’s graph to have no triangle \(3s > r \geq 2s + 1\): infact for such choices of \(r\) and \(s\), the graph will not contain triangles.

On the other hand, Kneser’s graph will contain large bipartite graphs (e.g. by partitioning \(\{1, \ldots, r\}\) into two disjoint subsets.) So it turns out that it’s much easier to avoid 3-cycles than to avoid large bipartite graphs. In fact, we can avoid 3-cycles, 5-cycles, and 7-cycles: still using Kneser’s graph.

Exercise 9.3.2. Find parameters of Kneser’s graph such that \(\chi > 1000\) and the graph does not contain any odd cycles of length less than 100.
The question is, what do we do about even cycles? Can we avoid C_4, for example?

Theorem 9.3.3. (Erdős) $\forall g, k, \exists$ a graph of girth $> g$ and $\chi \geq k$.

(Recall that **girth** is one the length of the shortest cycle occurring in the graph. So girth $> g$ means that there are no cycles of length $\leq g$.)

Proof. (Sketch) Pick n vertices, and choose edges independently with probability $p = \frac{n^\epsilon}{n} = n^{\epsilon-1}$. That is, we pick the edges by “flipping a biased coin” so that it’s not that likely we’ll put an edge in each place, but it will happen sometimes with probability $n^{\epsilon-1}$. So, E(degree of a given vertex) $\approx n^\epsilon$ (for large n). The goal is to show that there is no independent set of size $\geq \frac{n}{k}$, thus showing that $\chi \geq k$. Then, we want to show that there are no cycles of size $\leq g$.

Now, if $A \subset \{1, \ldots, n\}$, with $|A| = t$, then

$$P(A \text{ is independent}) = (1 - p)^{\binom{t}{2}}$$

(remember independent means no edges are in A). So,

$$P(\exists \text{independent set of size } t) < \binom{n}{t}(1 - p)^{\binom{t}{2}}$$

Therefore, we conclude, for example, that if $\binom{n}{t}(1 - p)^{\binom{t}{2}} < \frac{1}{100}$, then

$$P(\exists \text{independent set of size } t) < \frac{1}{100}$$

We need $t = \frac{n}{2k}$.

Now, P(a given cycle of length ℓ is in $G) = p^\ell$. Then, the number of constructible cycles of length ℓ is $n(n-1) \cdots (n-\ell+1) < n^\ell$. So E(#cycles of length $\ell) < (np)^\ell$. Also,

$$\sum_{\ell=1}^g (np)^\ell \approx (np)^g = n^{\epsilon g}, \quad (9.3.1)$$

since $np = n^\epsilon$. At the same time, we can make sure that the chromatic number $\chi > \frac{n/2}{n/2k} = k$. So this gives us what we want.

It was very difficult to actually give a construction of such a graph, which was finally done in 1980. It was done by taking the Cayley graph of the group $PSL(2, q)$ for appropriate choices of generators (this actually was done to find a graph with linear isoperimetric inequality, and in fact having a large eigenvalue gap in the eigenvalues of the adjacency matrix/Laplacian.)