A11.1 Homogeneous polynomials

Definition A11.1.1. A homogeneous polynomial in n variables of degree d is an element of the span of the monomials of degree d. A monomial of degree d has the form $x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n}$ with $\sum_{i=1}^n e_i = d$. Let $H_d(n)$ denote the space of homogeneous polynomials in n variables of degree d.

Note that if a polynomial is homogeneous of degree d then for any scalar $\lambda \in F$ we have $f(\lambda x_1, \ldots, \lambda x_n) = \lambda^d f(x_1, \ldots, x_n)$.

Exercise A11.1.2. Assume the field F is infinite. Prove: if a polynomial $f \in F[x]$ satisfies $f(\lambda x_1, \ldots, \lambda x_n) = \lambda^d f(x_1, \ldots, x_n)$ for every scalar $\lambda \in F$ then f is homogeneous of degree d.

Example A11.1.3. The following polynomial is homogeneous of degree 3:

$$x_1^2x_3 + 4x_1x_4x_5 + 7x_2^3.$$

Let us compute the dimension of $H_d(n)$. First note that $H_1(n)$ is spanned by x_1, \ldots, x_n and therefore $\dim H_1(n) = n$. The basis of $H_2(n)$ can be split into two groups x_i^2 and x_ix_j ($i \neq j$). This shows that $\dim H_2(n) = n + \binom{n}{2} = \binom{n+1}{2}$. Next, we compute $\dim H_3(n)$ by splitting the monomials of degree 3 into three groups.

$$H_3(n) = \text{Span}(\{x_i^3\} \cup \{x_i^2x_j\}_{i \neq j} \cup \{x_ix_jx_k\}_{i < j < k}).$$

Clearly, the first and third sets contribute $n + \binom{n}{3}$ elements. The second set contributes $n(n-1)$ elements since the roles of i and j are not symmetric, so we have n choices for the square and then $n-1$ choices for the non-square. Now we get, by brute calculation,

$$\dim H_3(n) = n + n(n-1) + \binom{n}{3} = \binom{n+2}{3}.$$

Exercise A11.1.4. Prove that $\dim H_d(n) = \binom{n+d-1}{d}$. Hint: Count monomials by giving a bijection to a set which is easier to count directly.
A11.2 Euclid’s algorithm

Definition A11.2.1. Suppose that \(f \) and \(g \) are elements of a commutative ring with identity (e.g. the integers, or univariate polynomials over a field). Then \(f \mid g \) if there exists \(h \) such that \(g = fh \).

Homework: study Euclid’s gcd algorithm for integers, using, e.g., web resources (MathWorld, Wikipedia, etc.). The algorithm is based on the

Theorem A11.2.2. ("Division Theorem") Given integers \(a, b \) such that \(b \neq 0 \), there exists integers \(q, r \) such that \(a = qb + r \) and \(0 \leq r < |b| \).

Polynomials also have a Euclidean algorithm. Our convention is that \(\text{deg} \ 0 = -\infty \).

Theorem A11.2.3. (Division Theorem for polynomials) For any polynomials \(f(x) \) and \(g(x) \neq 0 \) over a field, there exist polynomials \(q(x) \) and \(r(x) \) over the same field such that \(f(x) = q(x)g(x) + r(x) \) where \(\text{deg} r(x) < \text{deg} f(x) \).

Definition A11.2.4. (Greatest common divisors) Let \(a, b \) be either integers or univariate polynomials over a field. Then \(d \) is a greatest common divisor of \(a \) and \(b \), if

(i) \(d \mid a \) and \(d \mid b \), and

(ii) whenever \(d' \) divides both \(a \) and \(b \) it must be the case that \(d' \mid d \).

Note that this is a wish-list; there is no a priori guarantee that a number or polynomial satisfying these requirements exists.

Moreover, the gcd, if exists, is not unique. Among the integers, if \(d \) is a greatest common divisor of \(a, b \) then so is \(-d \). These are the only two in the case of the integers. We reserve the notation \(\gcd(a, b) \) for the positive greatest common divisor.

If \(a \) and \(b \) are polynomials then their gcd is unique up the nonzero scalar multiples (if \(x^2 + 3 \) is a gcd then so is \(7x^2 + 21 \)).

Exercise A11.2.5. (a) Prove that the gcd of polynomials over a filed is unique up to nonzero scalars. (b) What is the situation over \(\mathbb{Z}[x] \)?

Homework A11.2.6. Study Euclid’s algorithm. Prove that a greatest common divisor (satisfying our definition) exists for integers or polynomials.

How can we determine whether two polynomials have a common factor, or even their greatest common divisor? One method is to use the Euclidean algorithm. Observe that if \(a \) and \(b \) are integers, then \(\gcd(a, b) \) divides every integer linear combination of \(a \) and \(b \). In fact, by iterating the Euclidean algorithm, we can arrive at an expression \(\gcd(a, b) = xa + yb \) for some integers \(x, y \).

Example A11.2.7. Given integers \(a = 28, b = 231 \), write \(231 = 8 \times 28 + 7 \) so we already have \(7 = 231 + (-8) \times 28 \). Typically, more steps are needed to find a linear combination expressing the gcd.
Exercise A11.2.8. Let \(k, l > 0 \) and prove that
\[
\gcd(a^k - 1, a^l - 1) = a^{\gcd(k,l)} - 1.
\]

Exercise A11.2.9. Show that a greatest common divisor over \(\mathbb{Q}[x] \) is a greatest common divisor over \(\mathbb{C}[x] \).

A11.3 Greatest common divisor as a linear combination

Theorem A11.3.1. If \(H \leq (\mathbb{Z},+) \) then \(H \) is cyclic, i.e. there exists \(d \in \mathbb{Z} \) such that \(H = d\mathbb{Z} := \{dn : n \in \mathbb{Z}\} \).

Proof. If \(H = \{0\} \) then we take \(d = 0 \). Assume that there exists \(0 \neq a \in H \). Then \(a - a = 0 \in H \) and \(0 - a = -a \in H \). Furthermore if \(a, b \in H \) then \(-b \in H \) so \(a - (-b) = a + b \in H \).

Even more, if \(k \in \mathbb{N} \) then \(ka = a + \cdots (k \text{ times}) + a \in H \) and \((-k)a = -(ak) \in H \). So \(H \) is closed under taking integer-linear combinations of elements. In \(d\mathbb{Z} \), \(d \) is the smallest positive number. Therefore we should consider the smallest positive number in \(H \). Let \(d = \min\{x \in H : x > 0\} \) (there are positive numbers in \(H \) since there is a nonzero number \(x \in H \) and one of \(x, -x \) is positive).

Claim A11.3.2. \(H = d\mathbb{Z} \).

Indeed, consider \(0 \neq h \in H \). We may assume that \(h > 0 \) (by replacing \(h \) with \(-h \) if need be). Write \(h = qd + r \) where \(0 \leq r < d \). Note that \(-qd \in H \) so \(h - qd = r \in H \). But \(d \) is the smallest positive number and therefore \(r = 0 \). So \(d \mid h \). Similarly \(d \mid -h \). Of course it is now clear that \(H = d\mathbb{Z} \).

Here is an application of this theorem. If \(a, b \in \mathbb{Z} \) consider the set \(H = \{xa + yb : x, y \in \mathbb{Z}\} \subset \mathbb{Z} \). Observe that this set is a subgroup of \(\mathbb{Z} \) since it is evidently nonempty and closed under subtraction. By the theorem \(H = d\mathbb{Z} \). Note \(a, b \in H \) so \(d \mid a, b \). Furthermore \(d = xa + yb \) for some choice of \(x, y \in \mathbb{Z} \). So if \(d' \mid a, b \) then \(d' \mid xa + yb = d \). Hence \(d \) is a greatest common divisor of \(a \) and \(b \)!

Corollary A11.3.3. Given two integers \(a \) and \(b \), a greatest common divisor of \(a \) and \(b \) exists and can be expressed as an integer linear combination of \(a \) and \(b \).

Exercise A11.3.4. If \(x, y \in \mathbb{Z} \) are such that \(xa + yb \) is a common divisor of \(a \) and \(b \) then \(xa + yb \) is a greatest common divisor.

Exercise A11.3.5. Let \(a, b \neq 0 \) be integers. There are \(x, y \) such that \(|x| < |b| \) and \(|y| < |a| \) such that \(xa + by = \gcd(a, b) \).

Exercise A11.3.6. Let \(F_n \) be the \(n^{th} \) Fibonacci number. Then \(\gcd(F_k, F_l) = F_d \) where \(d = \gcd(k, l) \). (Recall that \(F_0 = 0, F_1 = 1, \) and \(F_n = F_{n-1} + F_{n-2} \).)
A11.4 Greatest common divisor of polynomials

You will see in the next bunch of exercises that there is a very similar story when we replace the integers with polynomials in one variable over a field.

Definition A11.4.1. Let $H \subset F[x]$. H is an ideal of $F[x]$ (denoted $H \triangleleft F[x]$) if it is nonempty, closed under subtraction, and for any $h(x) \in H$ and $f(x) \in F[x]$ we have $f(x)h(x) \in H$.

Clearly, if $d(x) \in F[x]$ is a polynomial then the set $d(x)F[x] := \{d(x)f(x) : f(x) \in F[x]\}$ is an ideal in $F[x]$. An ideal of the form $d(x)F[x]$ is called a principal ideal. In fact, these are the only ideals in $F[x]$:

Exercise A11.4.2. Prove that all ideals in $F[x]$ are principal. In other words, given an ideal $H \triangleleft F[x]$, prove that there exists $d(x) \in F[x]$ such that $H = d(x)F[x]$.

(Hint: follow the ideas of the proof of Theorem A11.3.1; use the “Division Theorem for polynomials.”)

Exercise A11.4.3. For every pair of polynomials $f(x), g(x)$ there exists a greatest common divisor $d(x) \in F[x]$ for f and g and $d(x) = u(x)f(x) + v(x)g(x)$ for some polynomials $u, v \in F[x]$.

Exercise A11.4.4. If $f, g \neq 0$ then we can choose u, v as above to satisfy $\deg u < \deg g$ and $\deg v < \deg f$.

Exercise A11.4.5. If f and g are relatively prime then there exist unique polynomials u, v such that $uf + vg = 1$ and $\deg u < \deg g$ and $\deg v < \deg f$.

A11.5 The resultant

We try to understand when two rational polynomials have a common complex root. While Euclid’s algorithm provides a way to decide this question, it does not give an explicit formula.

Sylvester showed that for $f, g \in F[x]$, there is a quantity $R(f, g)$ calculated by a determinant such that

$$R(f, g) = \begin{cases} 0 & \gcd(f, g) \neq 1, \\ \neq 0 & \gcd(f, g) = 1. \end{cases}$$

We shall find Sylvester’s determinant. Given

$f(x) = a_0 + a_1 x + \cdots + a_k x^k \quad a_k \neq 0$

$g(x) = b_0 + b_1 x + \cdots + b_l x^l \quad b_l \neq 0$

we are looking for

$u(x) = r_0 + r_1 x + \cdots + r_l x^{l-1}$

$v(x) = s_0 + s_1 x + \cdots + s_k x^{k-1}$
such that
\[u(x)f(x) + v(x)g(x) = 1. \] (1)

There is a solution (a choice of \(r_i, s_j, k + l \) unknowns) if and only if \(\gcd(f, g) = 1 \).

The equation (1) provides a linear system of equations in \(r_i, s_j \). Calculate a little:

\[
\begin{align*}
u(x)f(x) &= a_0 r_0 + (a_0 r_1 + a_1 r_0)x + \cdots + a_k r_{l-1} x^{k+l-1} \\
v(x)g(x) &= b_0 s_0 + (b_0 s_1 + b_1 s_1)x + \cdots + b_l s_{k-1} x^{k+l-1}
\end{align*}
\]

so that we are looking to solve

\[
\begin{align*}
a_0 r_0 + b_0 s_0 &= 1, \\
a_0 r_1 + a_1 r_0 + b_0 s_1 + b_1 s_0 &= 0, \\
&\vdots \\
a_k r_{l-1} + b_l s_{k-1} &= 0.
\end{align*}
\]

This system can be expressed by a matrix called the Sylvester matrix

\[
S(f, g) = \begin{pmatrix}
a_0 & 0 & 0 & \cdots & 0 & b_0 & 0 & \cdots & 0 \\
a_1 & a_0 & 0 & \cdots & 0 & b_1 & b_0 & \cdots & 0 \\
\vdots & a_1 & a_0 & \cdots & \cdots & b_1 & \cdots & 0 \\
\vdots & \vdots & a_1 & \cdots & \cdots & \cdots & \cdots & 0 \\
a_k & \cdots & a_0 & \cdots & \cdots & b_0 \\
0 & a_k & \cdots & \cdots & b_1 & \cdots & b_1 \\
0 & 0 & a_k & \cdots & 0 & b_1 & \cdots & \cdot \\
\vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \cdots & \cdots & \cdot \\
0 & 0 & \cdots & a_k & 0 & 0 & \cdots & b_l
\end{pmatrix}
\]

and a matrix equation

\[
S(f, g) \begin{bmatrix}
r_0 \\
r_1 \\
\vdots \\
r_{l-1} \\
s_1 \\
\vdots \\
s_{k-1}
\end{bmatrix} = \begin{bmatrix} 1 \\
0 \\
\vdots \\
0 \end{bmatrix}. \] (2)

Warning: The Sylvester matrix depicted above is an approximation, you should think about what it looks like and get your own mental picture. Note that if \(\gcd(f, g) \neq 1 \) then \(S(f, g) \) is certainly singular since (2) has no solution. On the other hand, by exercise A11.4.5 above if \(f \) and \(g \) are relatively prime then (2) has a unique solution and therefore \(S(f, g) \) is nonsingular.
(If a matrix M is singular then there are solutions to $Mx = 0$ with $x \neq 0$ therefore if $Mv = b$ and $Mx = 0$ then $M(x+y) = b$ as well so no solutions to matrix equations are unique.) The resultant promised above is just $R(f, g) = \det S(f, g)$. In summary, $R(f, g) = 0$ if and only if f and g have a common factor.

A11.6 Bollobás’s Theorem via resultants

An application of resultants we can give a second linear algebra proof of Bollobás’s Theorem, due to Aart Blokhuis. Recall the theorem:

Theorem A11.6.1. If A_1, \ldots, A_m and B_1, \ldots, B_m are sets with $|A_i| = r$ and $|B_j| = s$ such that

$$A_i \cap B_j = \begin{cases} \emptyset & i = j \\ \neq \emptyset & i \neq j \end{cases}.$$

Then $m \leq \binom{r + s}{r}$.

Blokhuis’s Proof. Without loss of generality assume that A_i and B_j are sets of real numbers. Let $f_i(x) = \prod_{\alpha \in A_i} (x - \alpha)$ and $g_j(x) = \prod_{\beta \in B_j} (x - \beta)$. Then $f_i(x)$ and $g_j(x)$ have a common factor if and only if $i \neq j$. In the language of resultants $R(f_i, g_j) = 0$ if and only if $i \neq j$.

Consider a generic polynomial $G(x) = b_0 + b_1 x + \cdots + b_s x^s$ and observe that $F_i(b_0, \ldots, b_s) = R(f_i, G)$ is a homogeneous polynomial in the b_i of degree r. Let $g_j(x) = g_{j0} + g_{j1} x + \cdots + g_{js} x^s$. Because $F_i(g_{j0}, \ldots, g_{js}) \neq 0$ if and only if $i = j$, we see in the usual manner that the F_i are linearly independent. Therefore $m \leq \dim H_r(s+1) = \binom{r+s}{r}$.

\[\Box\]