Definition (Arithmetic progression). An arithmetic progression is a sequence of the form $a, a+d, a+2d, a+3d, \ldots$. d is known as the increment of the arithmetic progression.

Exercise 1. Prove that for any number n not divisible by 7, the sequence $0, n, 2n, 3n, \ldots, 6n$ represents each residue modulo 7 exactly once.

Exercise 2. Prove that a 7-term arithmetic progression of primes whose smallest term is greater than 7 must have increment divisible by 210.

Exercise 3. More generally, prove that a k-term arithmetic progression of primes whose first term is greater than k must have increment divisible by every prime $p \leq k$.

Theorem (Prime Number Theorem). The prime counting function $\pi(x) = \# \{p: p$ is prime and $p \leq x\}$ satisfies

$$\pi(x) \sim \frac{x}{\ln(x)}$$

Definition (Asymptotic equality). Two sequences a_0, a_1, a_2, \ldots and b_0, b_1, b_2, \ldots are asymptotically equal, denoted $a_n \sim b_n$, if

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1.$$

(For the purposes of this definition, if $a_k = b_k = 0$, we take a_k/b_k to be 1.)

Exercise 4. Prove that the following statement is equivalent to the Prime Number Theorem:

$$\prod_{p \leq x} p \sim e^{x(1+\epsilon_x)}$$

where the product is over primes $\leq x$, and $\lim_{x \to \infty} \epsilon_x = 0$.

Exercise 5. Prove that for any fixed $c > 0$, (i.e. c does not depend on x)

$$\lim_{x \to \infty} \frac{\ln(x)}{x^c} = 0.$$

Exercise 6. Prove that e is irrational. $\text{Hint: } e = \sum_{n=1}^{\infty} \frac{1}{n!}$.

Exercise 7 (Lemma 2 from class). Prove that if p is prime and $p^j | \binom{n}{k}$ then $p^j \leq n$.

1
Exercise 8. Prove that if the natural numbers are partitioned into \(n \geq 2 \) disjoint arithmetic progressions \(\{a_1 + kd_1 : k \in \mathbb{N}\}, \{a_2 + kd_2 : k \in \mathbb{N}\}, \ldots, \{a_n + kd_n : k \in \mathbb{N}\} \) then at least two of the increments \(d_1, \ldots, d_n \) must be equal.

Exercise 9. Suppose a regular \(n \)-gon with vertices \(a_0, a_1, \ldots, a_{n-1} \) is inscribed in the unit circle. Prove that the product of the lengths of the lines \(a_0a_1, a_0a_2, a_0a_3, \ldots, a_0a_{n-1} \) is equal to \(n \).

Exercise 10. Formulate a conjecture about which primes can be written as the sum of two squares.

1. Experiment with small primes, observe the simple pattern, and make a conjecture;
2. Prove that if a prime does not satisfy your hypothesis then it cannot be written as a sum of two squares (should be relatively easy); and
3. **[Fermat]** prove that if a prime does satisfy your hypothesis then it can be written as a sum of two squares.

Definition. Given a set \(S \) of \(n \) distinct points in the plane, let \(u(S) \) denote the number of pairs of these points that are exactly distance 1 apart, i.e., \(u(S) = \#\{\{x, y\} : x, y \in S \text{ and } \text{dist}(x, y) = 1\} \). Let \(m(n) = \max\{u(S) : |S| = n\} \).

Exercise 11. (1) Prove there is a constant \(c \) such that for all \(n \), \(m(n) < cn^{3/2} \). **Hint:** graph theory.

2. Prove that \(\lim_{n \to \infty} \frac{m(n)}{n} = \infty \).

3. Prove that for any fixed \(k \),

\[
\lim_{n \to \infty} \frac{m(n)}{n(\ln n)^k} = \infty
\]

Hint: number theory.

Definition (Tournament). A **tournament** is an orientation of a complete graph, i.e., it consists of \(n \) vertices, and for each pair of distinct vertices \(x \neq y \), exactly one of \(x \) or \(y \) is chosen as the “winner.” A tournament is \(k \)-**paradoxical** if for every set \(S \) of \(k \) vertices, there is a vertex that beats every vertex in \(S \).

Exercise 12. Prove that for every \(k \), there exists a \(k \)-paradoxical tournament.

Exercise 13. Let \(P_k(n) \) denote the fraction of tournaments on a given set of \(n \) vertices that are \(k \)-paradoxical. Prove that for any fixed \(k \), \(\lim_{n \to \infty} P_k(n) = 1 \). (We say “A typical tournament is \(k \)-paradoxical,” or “A random tournament is almost surely \(k \)-paradoxical.”)

Exercise 14. Make a plausible suggestion of an explicit construction of a \(k \)-paradoxical tournament for any \(k \). **Hint:** number theory.