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1. Class 1

What is a Graph?

Definition 1.1. A graph is a set of vertices V and a set of edges E, where each edge is are
two element subsets of the set of vertices. A directed graph is a set of vertices V , and a set
of edges E, where E ⊂ V × V . (In both, loops and multiple edges are allowed.)

A graph is called simple if it is undirected, has no loops, and has no multiple edges. (For
the first part of the course, we’ll just worry about simple graphs.)

The degree of a vertex is the number of edges containing the vertex.

Example 1. Let V be the set of people in the classroom, and there is an edge between two
people if the two people are friends. Is this graph directed? Alternatively, draw an edge
between person ‘A’ and person ‘B’ if ‘A’ is attracted to ‘B’. Is this directed?

Exercise 1. Is it possible that everyone in the class knows a different number of people?
Here, we’re assuming that the relation of “knowing each other” is symmetric, i.e, x knows y
if and only if y knows x.

Solution 1. It is impossible: say there are n people in the class. Then, (since one can’t
know oneself) the number of people that each person could know is one of 0, 1, . . . , n − 1.
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So, for each person to know a different number of people, there must be some person that
knows everyone, and there must be some person that knows no one. But this is impossible:
the relation of knowing each other is symmetric, so the person who knows no one should
know the person who knows everyone!

So, we just proved that there is no finite (simple) graph such that every vertex has a
different degree.

Problem 1. Is there an infinite simple graph such that all degrees are different?

Guess 1. Of the people who voted, “it exists” was the consensus, but there wasn’t a very
high turnout!

Exercise 2. There are six hippos sitting in a sauna. Show that either

(1) there are three of them that all know each other, or
(2) there are three of them that all do not know each other.

Also, show that this fails if there are only five hippos in the sauna.

Solution 2. We can assume that there’s a vertex v with degree at least three, by considering
the complement if necessary. Now, look at least three of the vertices that are connected to
v, say v1, v2, and v3. If none of v1, v2, and v3 know each other, then they form an empty
triangle, and if two of them know each other, say v1 and v2, then v, v1, and v2 form a full
triangle.

What does this last exercise mean in terms of graphs? It means that in any (undirected)
graph with six points, you can either find a (full) triangle or an ‘empty’ triangle.

What do we mean when we say two graphs are the same?

Definition 1.2. We say that two graphs are isomorphic if there is a bijection between the
vertex sets that preserve the edges.

Exercise 3. Prove that all counterexamples to the “hippo theorem” with five points are
isomorphic to the pentagon.

Proof. The degree of every vertex must be two! �

Exercise 4. Suppose that G is a simple graph on n points, where the degree of every vertex
is 2. Show that G is a disjoint union of cycles.

Proof. Start at a vertex, go to a neighbor, go to the next (unused neighbor), keep going
until . . . , we got back where we started! If you used all the points, you’re done, if not, keep
going! �

Now, let’s talk about prom. We’ll get to the first real theorem in graph theory. We need
to get all the boys a date to prom. Let B be the set of boys and G the set of girls. We’ll
assume that there are more girls than boys. We’ll draw a graph where the set of vertices is
the set of boys and girls, and we draw an edge between a boy and a girl if the boy is willing
to dance with the girl. (This is an example of a bipartite graph, because boys don’t want to
dance with boys and girls don’t want to dance with girls. In other words, there are two big
potatoes, and the edges only go between the potatoes; there are no edges internal to each
potato.)
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Now, the question is, “Can we arrange things so that every boy is dancing with a girl with
whom he wants to dance?” The following condition is necessary: we cannot find a subset of
k boys that will only dance with less than k girls. In fact, this condition is sufficient.

Theorem 1.1. In the above situation, if for all X ⊂ B, X has at least |X| neighbors in G,
then there is a matching from B to G. (In other words, for every boy, we can find a unique
neighbor.)

Proof. Start matching people in a “really stupid way”. If we can do it forever great! If not,
we’ll get to a point where we have a bijection between a set of boys B0 and a set of girls
G0, and we’re trying to match a boy b /∈ B0, and we can’t, because every girl b wants to
dance with is in G0. Then, consider the set of girls G′ that consists of the girls that can be
reached from b by an “alternating path”. If G′ is a subset of G0, let B′ be the set of boys
in B0 matched to girls in G′. Then, the set of neighbors of B′ ∪ {b} is G′, which contradicts
the hypothesis of the theorem. So, G′ is not a subset of G0, and we can re-arrange the
partnerships along an alternating path that ends outside of G0. This allows us to continue
our matching. �

Definition 1.3. We say that a graph G is k-regular if the degree of every vertex is k.

Corollary 1.1.1. Every k-regular (k ≥ 1) bipartite graph has a perfect matching. (So in
the language above, every boy will dance with exactly k girls and for every girl, there are
exactly k boys who want to dance with her.) Why does the condition imply that there are
the same number of boys and girls?

Proof. Apply the marriage lemma: this gives a matching; it must be perfect because there
are the same number of boys and girls!

(To see that there are the same number of boys and girls, note that if there are m boys
and n girls, then there must be k ·m edges in the graph, since each boy will dance with k
girls. However, there are also k · n edges in the graph, since for every girl, there are k boys
that will dance with her. Thus, k · n = k ·m, i.e, m = n.)

(To see that the lemma applies: let X be a subset of the boys. Let X be any subset of
the boys, say it has n elements. Then, call Y the set of neighbors of X. Then, there are
n · k edges going from X to Y . If there are less than n elements in Y , then at least one of
the points of Y has degree greater than k, which is impossible.) �

Exercise 5. Shuffle a deck of (fifty-two) cards, and deal thirteen hands of four cards each.
Show that you can choose one card from each hand so that you obtain exactly one card of
each rank (i.e., one ace, one two, one three, etc.).

Proof. Use the above corollary: the group of boys is each of the hands, and the girls are the
ranks of the cards. The cards are the edges. This is a 4-regular graph, so we’re done.

There is a slight problem: there could be multiple edges, but everything (the marriage
lemma and the corollary) works with multiple edges. �

Problem 2. Suppose we have an a× b “table of cards”. A horizontal shuffling is when we
permute the elements of the first row, then permute the elements of the second row, etc.
A vertical shuffle is defined with columns in place of rows. Show that one can obtain any
permutation of the table by performing a vertical shuffle, then a horizontal shuffle, and then
a vertical shuffle.

3



Hint: first solve it for a 2× 2 grid.
Question from the class: is it true in three dimensions? Answer: Probably, if you do the

first dimension, then second, then third, then second then first.

Definition 1.4. Let G be a graph. A path in G is a sequence of vertices x0, x1, . . . , xd such
that xj is a neighbor of xj+1 for all 0 ≤ j < d.

We say that x ∼ y if there is a path from x to y. Is ∼ an equivalence relation? Yes, if G is
undirected, but if G is directed, then maybe not. Equivalence classes are called the connected
components of G. In particular, we say that G is connected if it has one component. In other
words, G is connected if between any two points there is a path.

How many edges must a connected graph have?

Lemma 1.1. If G is a connected graph of n points, then it must have at least n−1 vertices.

Proof. To prove this seemingly innocuous fact, we need some preliminaries.

Definition 1.5. A tree is a connected simple graph with no cycles.

Claim 1. A tree with n vertices has exactly n− 1 vertices.

Proof. We need to find a leaf, since then we can delete that leaf and use induction (the tree
is still connected, and the number of vertices and edges each drop by one). Why does every
finite tree have a leaf? If there were no leaf, we’d have a cycle: start at any vertex, and then
follow a path, never choosing the same vertex as before. We have to get back to some point
we already used! �

Now, we can prove the lemma. We should prove that every connected graph contains a
tree as a subgraph, since then the claim finishes our lemma. For each cycle, remove an edge,
and after a while, there will be no edges left. �

A related question: does every connected graph (not necessarily finite) contain a tree?
A question for next time: how many trees are there on n vertices? We’ll do this by first

solving it for n = 1, then for n = 2, then for n = 3, etc. There is 1 tree for n = 2, and there
are 3 trees for n = 3, 16 trees for n = 4, and 125 trees for n = 5. We conjecture that there
are exactly nn−2 trees on n points.

2. Class 2

Corollary 2.0.2. Every k-regular bipartite graph is the disjoint union of k perfect match-
ings.

Proof. It has a perfect matching, so remove it and induct on k. �

Definition 2.1. A weighted graph is a graph equipped with a positive weight for every edge.
A weighted graph is regular, if for every vertex, the sum of weights of edges leaving the
vertex is a constant.

Lemma 2.1. Is the following conjecture true or not true? Every regular weighted bipartite
graph has a perfect matching.
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Proof. We can certainly do it if all weights are one, since this is the original marriage lemma.
If every weight is an integer, it’s easy, since we can replace a single edge with a weight of n
with n edges all with weight one. Then, we’re in the situation of every edge having weight
one. Now, we can do all rational weights, since we can clear denominators and return to the
situation of integers. We’d like to finish by using the density of the rationals in the reals (and
approximating our graph with real weights by graphs with rational weights), but problems
occur because we cannot ensure that the “approximating graphs” are regular. A proof exists
(using these methods), but we’ll need to use linear algebra.

For another approach, we’ll think about what the marriage lemma actually says for regular
bipartite graphs. It says we have a perfect matching if and only if for every subset of size n
that subset has at least n neighbors? (How do we know the matching is perfect? In other
words, how do we know that each side has the same number of points? Use the same proof
as for k-regular graphs: add up all the weights on the left side, you get n · c, where n is the
number of points and c is the constant value of the weights at each vertex. On the right, we
have m · c. But these must be equal, so we have n · c = m · c, i.e., n = m.)

To prove the marriage lemma for regular graphs, we just need to check the condition
from the marriage lemma. But, the condition from the lemma follows immediately from the
regularity condition: if X is a subset of the left hand side and Y is its set of neighbors, we
can conclude that c |X| ≤ c |Y |, i.e., |X| ≤ |Y |. �

(From the marriage lemma for regular graphs, we get a similar corollary for regular graphs
as the first corollary from today.)

Exercise 6. Euler’s Konigsberg’s Bridges Problem. One can’t take a path that uses every
bridge exactly once (see figure 1). It’s really a graph theory question: add a vertex for each
piece of land and an edge for each bridge, as in figure 2. We’re asking if we can find a path
that uses every edge exactly once.

How do we prove that no such path exists? Suppose you had a path: it starts somewhere
and it ends somewhere. Now, for every point that is not a starting point or an ending point,
one must visit that point an even number of times (since every time one visits it, one also
leaves it). Moreover, one must leave on a different edge than the edge that one entered on.
But this is impossible: every vertex has odd degree!

Definition 2.2. A graph is Eulerian if there is admits an Eulerian circuit, i.e., a path that
uses every edge exactly once and ends where it starts.

For example, a cycle is Eulerian.

So, thinking about the Konigsberg’s Bridges Problem, we see that if a graph is Eulerian,
then every vertex has even degree. In fact, the converse is true: if every vertex has even
degree, then the graph is Eulerian. The full and precise statement is

Theorem 2.1. G is an Eulerian graph if and only if G is connected and every degree is
even. (G must be finite, with no isolated points.)

Proof. We already saw the forward implication. For the reverse, we’ll induct on the number
of edges. Just start walking and eventually you’ll get back to where you started. (You can
always continue, because each vertex has degree 2.) If we created an Eulerian circuit, great!
If not, remove that circuit. Then, the resulting graph is a disjoint union of connected graphs
with all degrees even. By induction, each of these has an Eulerian circuit. We can combine

5



Figure 1. The Seven Bridges
of Konigsberg

Figure 2. The same picture,
translated into a graph

these Eulerian circuits together in the following manner. Start by taking the original path,
but when you get to a vertex that intersects one of the remaining components, follow the
Eulerian circuit on the component before resuming the path. In this way, we obtain a circuit
for the entire graph. �

Theorem 2.2. G is bipartite if and only if G has no cycle of odd length. (Recall that
bipartite means that one can color the vertices with two colors such that no edge has two
endpoints of the same color.)

Proof. The forward direction is immediate, since any graph with a cycle of odd length cannot
be bipartite. For the reverse, just start somewhere and color it white; then color all its
neighbors green (for Martian!); then color all the neighbors of all the green points white;
keep going! There can’t be any problems, because there are no odd cycles. �

Now, we’ll return to connectedness for directed graphs.

Definition 2.3. A directed graph is weakly connected if for all vertices x and y there is an
undirected path between x and y. (In other words, the graph is connected when thought of
as an undirected graph.)

A directed graph is strongly connected if for all vertices x and y there is a directed path
from x to y. Note that strongly connected implies weakly connected but not conversely.
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We say that a directed graph is regular if the “in degree” is equal to the “out degree”.

Exercise 7. Can you find a finite, regular, weakly connected directed graph that is not
strongly connected?

NO! By mimicking the proof for Eulerian circuits of undirected graphs, but using regularity
instead of evenness of degree, we see that the graph must have an Eulerian circuit, and is
therefore strongly connected! So, we’ve proven the following fact:

Theorem 2.3. A finite, regular, weakly connected graph strongly connected.

Definition 2.4. A permutation on X is a

• bijection X → X
• 1-regular directed graph on X
• rook configuration on X
• perfect matching between X and X
• cycle form

A rook configuration is an X by X matrix where we place rooks so that no two rooks are
attacking each other. So, there is exactly one rook in each row and exactly one rook in each
column. A rook configuration is also called a permutation matrix.

Now, we’ll give an example of cycle form. The cycle form of the permutation

1 7→ 3 2 7→ 1 3 7→ 2 4 7→ 5 5 7→ 4

is
(1, 3, 2)(4, 5)

How do we take the product of two cycles? What’s the product of (1, 3, 2) and (2, 1, 3)? Uh
Oh! In which order do we do the multiplication? We view the permutations as functions, so
we do the one on the right first, then the one on the left as below.

(1, 3, 2)(2, 1, 3) = (1, 2, 3)

How do we take the product of two 1-regular directed graphs? We just put them next to
each other.

How do we take the product of two rook configurations? We use the matrix product!

Definition 2.5. The adjacency matrix of a graph is a matrix where the rows and columns
are labeled by the vertices of the graph, and the vivj entry is the number of edges going from
vi to vj.

So, if a graph is undirected its adjacency matrix is symmetric. Loops are the entries on
the main diagonal. The out degree of a vertex is the sum of the row for the vertex, the in
degree of a vertex is the sum of a column for the vertex.

What does the adjacency matrix look like for a bipartite graph? It’s a block matrix:(
0 At

A 0

)
.

So, for bipartite graphs, we form the bipartite adjacency matrix, which is just the matrix A,
since this contains all the information as the “full adjacency matrix”. (More explicitly, the
bipartite adjacency matrix is where we index the rows by one of the ‘potatoes’ and index
the columns by the other ‘potato’.)
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Problem 3. Every 2k-regular (undirected) graph contains a 2-regular graphs.

Problem 4. If M is an n×n matrix with non-negative entries and every row sum and every
column sum is 1, then M is a convex combination of permutation matrices.

A convex combination of v1, . . . , vn is a sum

λ1v1 + · · ·+ λnvn,

where 0 ≤ λi for all i, and λ1 + · · ·+ λn = 1.

We haven’t proved the first problem, but the second one we already proved today!

3. Class 3

Problem 5. (From last time.) Every 2k-regular (undirected) graph contains a 2-regular
graphs.

Solution 3. Assume the graph G is connected (if not, we can do the following for each com-
ponent). Since all vertices have even degree, there is an Eulerian circuit, which determines
an orientation for each edge. Then there are k edges leaving/entering each vertex. We can
double the graph, letting G1 and G2 be two copies, and let a new (bipartite) graph have one
edge for each edge in the original graph, leaving the corresponding source vertex in G1 and
entering the corresponding target vertex in G2. This bipartite graph is k-regular, so has a
perfect matching. This matching corresponds to a 2-regular subgraph in the original graph.

We can phrase the same argument using matrices: Orient the edges as above. Then we
have the adjacency matrix of this directed graph, which has k 1’s in each column (and is
not symmetric). So this is also the adjacency matrix of a k-regular bipartite graph, and a
perfect matching corresponds to a permutation submatrix, which for the original graph is a
2-regular subgraph.

Vector Spaces. Review of definitions: ‘Vector space,’ ‘linear combination’ (finite sums of∑
αivi), ‘linearly independent’, ‘parallel’ (one being a non-zero scalar multiple of the other).

Example 2. An infinite linearly independent set: {xi : i ∈ N}, in the vector space of
polynomials (over some field).

Question: If a polynomial is zero as a function, does it have to be the zero polynomial?
No. This never holds over finite fields since there are infinitely many polynomials but only
finitely many functions. Subtract two different polynomials that give the same function to
obtain a nonzero polynomial representing the zero function.

Degree: deg(fg) = deg(f) + deg(g). So we say deg(0) = −∞.

Example 3. In the space of functions from R to R,

{1, sin(x), sin(2x), sin(3x), . . . , cos(x), cos(2x), cos(3x), . . .}

is a linearly independent set. Try to prove this, as it is an important example.

Definition 3.1. S is a maximal linearly independent set if S is linearly independent and for
any T with S ( T , T is linearly dependent.

Lemma 3.1. If S is a maximal linearly independent set in V , then S spans V .
8



Proof. Let v ∈ V . Then S ∪ {v} is linearly dependent, so αv +
∑

αivi = 0 for some choice
of α, αi ∈ F , vi ∈ V . Then α 6= 0, or else we would have a linear dependence in S, so we
can solve for v in terms of the vi, so v ∈ span(S). �

Lemma 3.2. If {v1, . . . , vn} is linearly independent, and {w1, . . . , wm} spans V , then n ≤ m.

Proof. Note: If S1 spans S2, and S2 spans S3, then S1 spans S3. We will show that there

is a wi so {wi, v2, . . . , vn} is linearly independent, and a wj so {wi, wj, v3, . . . , vn} is linearly
independent, and so on, until we have a list of n linearly independent w’s. Then if n > m,
there is a repeated s, contradicting linear independence. For ease of notation, we only show

the first step in this substitution argument. (The rest proceed by the same argument.) To
replace v1 by a wi and keep linear independence, we need wi 6∈ span(v2, . . . , vn). There must
be some wi satisfying this, since if all wi were in the span of {v2, . . . , vn}, then {v2, . . . , vn}
would span V , so we would have v1 ∈ span({v2, . . . , vn}), contradicting linear independence.

�

Lemma 3.3. If S1 and S2 are both linearly independent and spanning (we call such sets
bases), then |S1| = |S2|.

Proof. We apply the previous lemma with S1 linearly independent, and S2 spanning, then
again reversing the roles. �

Definition 3.2. If S is basis for V , then dim(V ) = |S|, the dimension of V

Definition 3.3. The rank of S is the size of a maximal independent subset, or equivalently,
the dimension of the span of S.

Definition 3.4. A subspace of a vector space is a nonempty subset closed under addition
and scalar multiplication. Notation: U ≤ V means U is a subspace of V .

Claim 2.

span(S) =
⋂

U≤V,S⊂U

U

Proof. Since span(S) is a subspace, one inclusion is immediate. For the other, we need to
see that if v ∈ span(S), then v is in every subspace containing S. This is immediate from
the definition of span (linear combinations) and the fact that subspaces are closed under
addition and scalar multiplication, and so closed under linear combinations. �

Infinity.

Exercise 8. If G is an infinite connected graph with every degree finite, then G has an
infinite geodesic (an infinite path (v1, v2, . . .) such that the distance from vi to vj in the
graph is |i− j|.

Lemma 3.4. (Combinatorial Zorn’s Lemma, or König’s Lemma.) If T is an infinite tree
with all degrees finite, then there is an infinite geodesic ray from the root.

Claim 3. A countable graph is legally c-colorable (has an assignment of colors to vertices so
no neighboring vertices share a color) if and only if every finite subgraph is legally c-colorable.
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Proof. If the infinite graph is legally c-colorable, of course every finite subgraph is. (Just
restrict the colorings.) Conversely: Chooses a nested sequence of subsets of the vertices

= G0 ⊂ S1 ⊂ S2 ⊂ . . . so that the union gives all vertices. These give finite subgraphs
Gi. Now consider a tree whose nth level conists of colorings of Gi, with an edge between
colorings in adjacent levels if the one coloring in level n + 1 restricts to the given coloring in
level n. The previous lemma gives an infinite geodesic through these colorings, allowing us

to color every vertex legally. �

Given a partial ordered set (U,<), we say that a chain is a totally ordered subset, and
that a chain, C has an upper bound x if x ≥ y for every y ∈ C. An element u ∈ U is called
maximal if, whenever v ∈ U is comparable to u, u ≥ v.

Theorem 3.1. (Zorn’s Lemma.) If (U,<) is a partially ordered set, where every chain has
an upper bound , then U has a maximal element (an element not smaller than anything in
U).

Zorn’s Lemma is equivalent to the axiom of choice. We can use it to prove:

Claim 4. Every vector space V has a basis.

Proof. Consider a vector space V , and order all linearly independent subsets by inclusion.
Then given a chain of linearly independent subsets, their union is linearly independent and
is an upper bound. So there is a maximal element S. As a maximal linearly independent
subset, S is basis. �

For practice using Zorn’s lemma, try the following.

Exercise 9. Let v 6= 0. Then there is a maximal subspace not containing v.

4. Class 4

We’ll start today with an application of Zorn’s Lemma:

Lemma 4.1. Every graph contains a spanning tree.

Proof. Let G be a graph. We proceed by a Zornification. Let X be the set of subgraphs of
G which contain no cycles, ordered by containment. Let {Ui | i ∈ I} be some chain of such
graphs, and let µ = ∪i∈IUi. Then µ is an upper bound for the chain.

To see this, note that if e1, · · · en is a cycle in µ, then for each 1 ≤ i ≤ n we have some
ji ∈ I for which ei ∈ Uji

. Because the Ui form a chain, one of the Uji
is maximal amongst

them all, so that Uj1 ⊂ Uji
, Uj2 ⊂ Uji

and so on. But then we note that Uji
contains all of

the ei and hence has a cycle. But this contradicts our assumptions. Therefore µ cannot have
a cycle.

Now by Zorn’s lemma, we know that there is a maximal element T of X. To see that T is
a spanning tree, note that it has no cycles, and so could only fail to be a spanning tree if it
were not a connected graph. But if that happened, then we could add an edge joining two
of the components together without introducing a cycle. This would contradict maximality
of T , so we see that T is indeed a spanning tree. �

Now let’s consider the following amazing fact:
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Definition 4.1. If K is any field, and n, k are natural numbers, let Mn,k(K) be the set of
n by k matrices with entries in K. Additionally, let Mn(K) = Mn,n(K).

Definition 4.2. If A ∈ Mn,k(K) matrix over any field then the row-rank of A is the maximal
number of linearly indepent rows which A has. Similarly the column-rank is the maximal
number of linearly independent columns of A.

Theorem 4.1. For any matrix A ∈ Mn,k(K) the row- and column-ranks of M are equal

Proof. We’ll come back to this... �

Sign of a Permutation.

Definition 4.3. Let X be a set. Then Sym(X) denotes the set of permutations of the ele-
ments of X. In addition, write Sym(1, · · · , n) denote the set of permutations on {1, · · · , n}.

If p ∈ Sym(1, · · · , n) then we can consider the pairs (i, j) such that 1 ≤ i < j ≤ n; for
each such pair we have either p(i) < p(j) or p(i) > p(j).

Definition 4.4. If p is such a permutation, let inv(p) = | {(i, j) | 1 ≤ i < j ≤ n, p(i) > p(j)} |,
which is the number of pairs whose order is reversed by p.

We say that p is even (odd) if inv(p) is even (odd).
In addition, define sign(p) = (−1)inv(p); so that the sign of p is 1 if inv(p) is odd and −1

of inv(p) is even. This is referred to as the signature or sign of the permutation.

Notice that the only permutation in Sym(1, · · · , n) which has inv(p) = 0 is the identity
permutation. This follows from the fact that if inv(p) = 0 then p is order-preserving so that in
particular it sends n to n. This reduces us to the case of a permutation in Sym(1, · · · , n−1),
where we inductively assume the result holds (it is clear in the case n = 1, which is the base
case).

Theorem 4.2. If p, q ∈ Sym(1, · · · , n) then sign(pq) = sign(p) sign(q).

Proof. Define

f(x1, x2, · · ·xn) =
∏

1≤i<j≤n

(xi − xj)

and note that

f(xp(1), xp(2), · · · , xp(n)) = sign(p)f(x1, x2, · · · , xn)

because we accumulate a minus sign each time a pair of numbers have their order swapped.
Therefore we have

sign(pg) =
f(xp(1), xpq(2), · · · , xpq(n))

f(x1, x2, · · · , xn)

=
f(xp(1), xpq(2), · · · , xpq(n))

f(xq(1), xq(2), · · · , xq(n))

f(xq(1), xq(2), · · · , xq(n)

f(x1, x2, · · · , xn)

= sign(p) sign(q)

notice that the left factor is sign(p) because p permutes the variables xq(1), · · · , xq(n) to give
xpq(1), · · · , xpq(n); the names of the variables are irrelevant! �
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Theorem 4.3. (Bubblesort algorithm) Every permutation in Sym(1, · · · , n) can be writ-
ten as a product of transpositions. These may be chosen to be transpositions of adjacent
elements.

Proof. Let p be such a permutation. Think of the numbers as labeling bubbles, p as arranging
the bubbles by weight. Find i so that p(i) = n (heaviest bubble). Swap i and i + 1 ( i is a
heavier bubble, so i moves downward past i + 1). Repeat this process to move the “heaviest
bubble” right to the bottom. Now we have n − 1 bubbles to sort (or n − 1 elements to
permute according to p). Inductively, we assume that we can sort these by transposing
adjacent elements. �

By convention, if M ∈ Mn,k(K) we typically denote the element in the ith row and jth
column of M by mi,j.

Definition 4.5. The determinant of M ∈ Mn(K) is given by

det(M) =
∑

p∈Sym(1,...,n)

sign(p)
n∏

i=1

mi,p(i)

Example 4.

det

[
a b
c d

]
= ad− bc

because the sign of the identity permutation (corresponding to ad) is 1, while the sign of the
permutation (1, 2) (corresponding to bc) is −1.

Likewise we have

det

a b c
d e f
g h i

 = abc + bfg + cdh− ceg + afh− bdi

In computing that last example we made use of the following two facts:

Lemma 4.2. The cyclic permutation (a1, · · · , ak) is odd exactly when k is even.

Proof. (a1, a2)(a1, a2, · · · , ak) = (a1)(a2, · · · , ak) so that we can decompose the cyclic per-
mutation of k elements as a product of k − 1 transpositions. �

Lemma 4.3. There are equal numbers of even and odd permutations in Sym(1, · · · , n).

Proof. We can multiply any permutation by (1, 2) to get a permutation of the opposite
sign; repeating this will return the original permutation. Therefore this provides a bijection
between the odd and even permutations, and there must be the same number of each. �

The determinant of M ∈ Mn(R) corresponds to the oriented volume of the shape in
n-dimensional space with sides given by the columns of M . In the case n = 2 this is a
parallelogram, and for n = 3 we get a parallelepiped. So, for instance, ac− bd is the oriented
area of a parallelogram with vertices (0, 0), (a, c), (b, c), (a + b, c + d).

The determinant is zero precisely when the columns of M are linearly dependent. We can
think of a parallelepiped as the shape of a cookie; zero volume corresponds to the vectors of
the cookie being linearly dependent (i.e. the entire cookie lies in a single plane).

Now we want to see how the determinant of a matrix M ∈ Mn(K) changes as we change
M ’s entries.

12



Lemma 4.4. Multiplying all of the entries in the first row of M by some constant λ will
multiply the determinant by λ.

Proof. Each of the rook configurations we can set up in M contains exactly one element from
the first row. Therefore the signed products in the determinant arising from each permutation
in Sym(1, · · · , n) will each be multiplied by λ. Therefore their sum (the determinant) is also
multiplied by λ. �

Lemma 4.5. Swapping two rows or columns of M will multiply the determinant by −1.

Proof. This shifts each of the rook configurations of M to correspond to different permuta-
tions by applying a transposition to each, so that the sign of the permutation associated to
each product in the determinant changes. �

It is clear that we can iterate this result to see that permuting the rows or columns of M
by a permutation p will multiply the determinant of M by sign(p).

Lemma 4.6. If two rows of matrix M are equal, then det M = 0.

Proof. In fields of characteristic other than 2, we can swap the two rows to get the same
matrix back and note that det M = − det M and therefore that det M = 0 from the previous
lemma. But for characteristic 2 this deduction is false. We need to note that if the two rows
are jth and kth then if p is a permutation we have

n∏
i=1

mi,p(i) =
n∏

i=1

mi,p̂(i)

where (p̂) is the permutation corresponding to the rook configuration which has rooks at
(j, p(k)) and (k, p(j)) instead of (j, p(j)) and k, p(k). This permutation is obtained from
p by a transposition, so the two have opposite signs and therefore they cancel out in the
determinant formula. �

Lemma 4.7. Adding a row (column) of M to another row (column) of M doesn’t change
the determinant.

Proof. We may as well assume that we are adding to the first row: we can write

M =

[
v
X

]
where v is a row vector and X is a n− 1 by n matrix. Then note that we have

det

[
v + w

X

]
= det

[
v
X

]
+ det

[
w
X

]
by expanding noting that each product in the determinant of the matrix[

v + w
X

]
has one factor of form m1,j which can be expanded as vj +wj where vj, wj are the jth entries
of v, w. In particular if w is already a row in the matrix then we note that we have

det

[
w
X

]
= 0

�
13



Similarly we can see that adding λ times one row to another can have no effect on the
determinant: by multiplying the jth row by λ, adding the jth row to the ith and then
dividing the jth row by λ we obtain a matrix with the same determinant (the first action
multiplies the determinant by λ and the last divides it by λ.

This gives us a way to compute determinants efficiently: we can add multiples of rows to
eachother to kill off entries of the matrix until the computation is easy.

Example 5. To compute the determinant of
1 2 0 3
−1 0 0 1
7 1 8 2
9 2 3 4


we can add row 1 to row 2, −7 times row 1 to row 3, and −9 times row 1 to row 4, and so
on.

Remark 1. This process is called Gaussian elimination. Ideally, we want to reduce our
matrix to something like 

a1 · · · · · · · · · · · · · · ·
0 a2 · · · · · · · · · · · ·
0 0 a3 · · · · · · · · ·
...

...
...

. . . · · · · · ·
0 0 0 · · · an−1 · · ·
0 0 0 · · · 0 an


in this case the matrix has only got nonzero entries on and above the main diagonal, and is
said to be upper triangular. In this case the determinant is given by∏

i

ai

because all of the rook configurations other than the diagonal one contain a zero element.
This follows from the fact that the rook in the last row must be in the last column to have
a nonzero entry, and that the ith row’s rook must be in a column greater than the ith, but
that all of those other than the ith are needed for the later rows to have nonzero entries.

Lemma 4.8. The number of even and odd permutations are equal (proof in the style of
Buddha).

Proof. 
1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1


All of the products in the determinant of this matrix are ±1 with sign corresponding to the
sign of the permutation. �
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Definition 4.6. If A ∈ Mn,k(K) and B ∈ Mk,m(K) then we define a matrix AB ∈ Mn,m

called the product of A and B by setting its i, jth entry to be the dot product of the ith row
of A and the jth column of B; i.e denoting this entry by [AB]i,j we have

[AB]i,j =
n∑

k=1

ai,kbk,j

Remark 2. If the dimensions don’t agree we have no way to multiply matrices.

Remark 3. The product of two permutation matrices gives a permutation matrix which
corresponds to their composite.

Exercise 10. A(BC) = (AB)C holds whenever the product makes sense.

Definition 4.7. The trace of a matrix A ∈ Mn(K) is given by

tr(A) =
n∑

i=1

aii

Lemma 4.9. tr(AB) = tr(BA).

Proof.

[AB]ii =
∑

j

aijbji

tr(AB) =
∑

i

∑
j

aijbji

=
∑

j

∑
i

bjiaij

= tr(BA)

�

Exercise 11. A matrix M ∈ Mn(K) has zero determinant if and only if its rows are linearly
dependent.

One direction here is straightforward: if a matrix has dependent rows then a nonzero
linear combination of them is zero, so one of them is a linear combination of the others.
Subtracting that linear combination gives us a zero row but doesn’t change the determinant.
So the determinant must’ve been zero all along.

5. Class 5

First, a lemma we used when discussing the problem set. This is important in its own
right, so I include it here

Lemma 5.1. If M ∈ Mn(K) has the property that for each n by 1 column vector v we have
Mv = 0, then M is the zero matrix.

Proof. Let ei be the column vector whose ith entry is zero and whose other entries are all
nonzero. Then Mei is just the ith column of M . But this is zero by assumption, and so we
see that all of M ’s columns are zero. �
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Definition 5.1. If A ∈ Mn,k(K) then we define the transpose of A to be the matrix denoted
AT in Mk,n(K) which is specified by setting [AT ]i,j = [A]j,i.

Lemma 5.2. For A ∈ Mn(K), det A = det AT .

Proof. First note that the products in the determinant all coincide, so we just need to check
the signs of the permutations. However the product corresponding to permutation p in A
will correspond to p−1 in AT . Notice that we have

sign(p) sign(p−1) = sign(Id) = 1

so that p and p−1 have the same sign. �

Theorem 5.1. If A, B ∈ Mn(K) then det(AB) = det(A) det(B).

Proof. We consider a matrix M ∈ M2n(K) which is built out of n by n blocks:

M =

[
A 0
−I B

]
Notice that det(M) = det(A) det(B) because the only rook configurations which are nonzero
are those whose entries in the first n rows are in the first n columns, and therefore that their
other entries imust be in the last n columns. So the rook configurations which contribute
are those given by pairs of rook configurations on n by n matrices.

det(M) =
∑

p∈Sym(1,··· ,2n)

sign(p)
2n∏
i=1

mi,p(i)

=
∑

q,r∈Sym(1,··· ,n)

sign(q) sign(r)

(
n∏

i=1

ai,q(i)

)(
n∏

j=1

bj,r(j)

)

=
∑

q,r∈Sym(1,··· ,n)

(
sign(q)

n∏
i=1

ai,q(i)

)(
sign(r)

n∏
j=1

bj,r(j)

)

=

 ∑
q∈Sym(1,··· ,n)

sign(q)
n∏

i=1

ai,q(i)

 ∑
r∈Sym(1,··· ,n)

sign(r)
n∏

j=1

bj,r(j)


= det(A) det(B)

Now add multiples of the first n columns in order to transform our matrix to the form[
A C
−I 0

]
We get C = AB because to kill off the entry bi,j we need to add bi,j times the ith column of
M to the i + nth column of M . Once in this form, by performing n row swaps we can get
our matrix to be [

−I 0
A AB

]
�
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which shows our original matrix had determinant

(−1)n det(−I) det(AB) = (−1)2n det(AB) = det(AB)

so that det(AB) = det(A) det(B)

Theorem 5.2. Exercise 17 from the problem set:

det


a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a

 = (a− b)n−1(a + b(n− 1))

Proof. Apply column operations: subtract the second from the first, the third from the
second, and so on. This yields the matrix

a− b 0 0 · · · b
b− a a− b 0 · · · b

0 b− a a− b · · · b
...

...
...

. . .
...

0 0 0 · · · a


Now add row 1 to row 2, row 2 to row 3, and so on to get

a− b 0 0 · · · b
0 a− b 0 · · · 2b
0 0 0 · · · 3b
...

...
...

. . .
...

0 0 0 · · · a + (n− 1)b


which clearly has the desired determinant. �

In particular this determinant when a, b > 0 and a 6= b.

Example 6. Suppose we have a town (a set of n people) in which there are some clubs
(subsets of the people). Let the clubs be A1, · · ·Am, and suppose that |Ai| = k for every i
and |Ai ∩ Aj| = l for each i 6= j.

Theorem 5.3. In the setup above we always have m ≤ n (the Fisher inequality).

Proof. Let M be the incidence matrix for the clubs: M ’s rows correspond to clubs, and
columns correspond to the citizens of the town: i.e. Mi,j = 1 if person i is in club j, and is
0 otherwise. If m > n then we can add some columns of zeros to get a matrix A ∈ Mm(Z).
Notice then that k is the sum over each row, and that the entry in the (i, j) position of AAT

is k for i = j and l otherwise (since taking the dot product of two rows of A gives us the
number of columns for which both of the rows contain a 1). But then AAT is of the form in
the previous theorem a = k, b = l and so the determinant we get is (k − l)n−1(k + l(n− 1))
which is nonzero unless k = l. But in that case we can only have one club. So we note that
we have k 6= l and therefore that det AAT 6= 0. But det A = 0 because we have a zero row,
proving m ≤ n. �
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6. Class 6

Lemma 6.1. For matrices consisting of blocks of the form[
I X
0 I

]
we have [

I X
0 I

] [
I Y
0 I

]
=

[
I X + Y
0 I

]
Definition 6.1. An elementary matrix is a matrix in Mn(K) which has 1s on the main
diagonal and zeroes in every other entry except one; that is, it is a matrix which differs from
the identity matrix in a single off-diagonal entry.

Lemma 6.2. If A ∈ Mn(K) and E is an elementary matrix then det(A) = det(EA) =
det(AE).

Proof. Suppose that E’s nonzero entry is ei,j for i 6= j. Then just note that multiplying A
on the left by E is the same as adding ei,j times the jth row of A to the ith row. Likewise,
multiplying on the right is equivalent to adding ei,j times the ith column of A to the jth
column. These operations preserve the determinant. �

This gives us another way to see why the matrices[
A 0
−I B

]
and

[
A AB
−I 0

]
have the same determinant: we can note that we have[

A AB
−I 0

]
=

[
A 0
−I B

] [
I B
0 I

]
and that the matrix

X =

[
I B
0 I

]
can be written as a product of elementary matrices by using (Lemma 6.1). But then multi-
plying by X is equivalent to multiplying by all of the elementary matrices in turn, and each
preserves the determinant.

Lemma 6.3. The Vandermonde determinant:

det


1 a1 a2

1 · · · an
1

1 a2 a2
2 · · · an

2

1 a3 a2
3 · · · an

3
...

...
...

. . .
...

1 an a2
n · · · an

n

 =
∏

1≤j<i≤n

(ai − aj)
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Proof. Subtract the first row from each of the others. This preserves the determinant and
gives 

1 a1 a2
1 · · · an

1

0 a2 − a1 a2
2 − a2

1 · · · an
2 − an

1

0 a3 − a1 a2
3 − a2

1 · · · an
3 − an

1
...

...
...

. . .
...

0 an − a1 a2
n − a2

1 · · · an
n − an

1


Now notice that any rook configuration not including the upper left 1 includes some zero
entry in the first column, so that we need only consider permutations fixing 1 when we
compute the determinant. Thus we have

det


1 a1 a2

1 · · · an
1

0 a2 − a1 a2
2 − a2

1 · · · an
2 − an

1

0 a3 − a1 a2
3 − a2

1 · · · an
3 − an

1
...

...
...

. . .
...

0 an − a1 a2
n − a2

1 · · · an
n − an

1

 = det


a2 − a1 a2

2 − a2
1 · · · an

2 − an
1

a3 − a1 a2
3 − a2

1 · · · an
3 − an

1
...

...
. . .

...
an − a1 a2

n − a2
1 · · · an

n − an
1


For this new matrix the kth row is divisible by ak − a1 because we have

ai
k − ai

1 = (ak − a1)(a
i−1
k + ai−2

k a1 + · · ·+ aka
i−2
1 + ai−1

1 ).

Factoring each of the elements of the matrix and pulling the terms out of the determinant,
we have

det


a2 − a1 a2

2 − a2
1 · · · an

2 − an
1

a3 − a1 a2
3 − a2

1 · · · an
3 − an

1
...

...
. . .

...
an − a1 a2

n − a2
1 · · · an

n − an
1



=
n∏

i=2

(ai − a1) det


1 a2 + a1 · · · an−1

2 + an−2
2 a1 + · · ·+ a2a

n−2
1 + an−1

1

1 a3 + a1 · · · an−1
3 + an−2

3 a1 + · · ·+ a3a
n−2
1 + an−1

1
...

...
. . .

...
1 an + a1 · · · an−1

n + an−2
n a1 + · · ·+ ana

n−2
1 + an−1

1


Now looking at this new matrix we subtract a1 times the first column from the second, a2

times the second column from the third, and so on, to get
1 a2 · · · an−1

2

1 a3 · · · an−1
3

...
...

. . .
...

1 an · · · an−1
n

 .

This is simply a Vandermonde matrix of one fewer variables, and so we may proceed by
induction. By assumption, the determinant of the smaller matrix is equal to∏

2≤j<i≤n

(ai − aj),
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and therefore the original Vandermonde matrix has determinant(
n∏

k=2

ak − a1

)( ∏
2≤j<i≤n

(ai − aj)

)
=

∏
1≤j<i≤n

(ai − aj)

which is the desired result. �

Definition 6.2. A directed graph is said to be acyclic if it has no directed cycles.

Definition 6.3. A weighted directed graph is a directed graph G with a function w : E(G) → K
for some field K; for us it is safe to assume K = C.

Definition 6.4. If G is a weighted graph, a, b vertices in G, and p = (e1, e2, · · · , en) a path
from a to b then we define the weight of p to be

w(p) =
n∏

i=1

w(ei).

To denote a path p from a to b, we shall sometimes write p : a → b. We define the flux from
a to b to be

F (a, b) =
∑

p:a→b

w(p)

Warning: The following definition of a path configuration is slightly different from the
one given in class, in that it now explicitly includes a permutation; this does not change the
content of the theorems at all, but it makes the definition easier to write out.

Definition 6.5. Given G, a finite acyclic weighted directed graph with weight function w,
and a1, · · · , an and b1, · · · bn subsets of the vertices, then a path configuration P on G with
respect to these vertices is a set p1, · · · , pn of n paths in G together with a permutation
q ∈ Sym(1, · · · , n) such that for each i, pi is a path from ai to bq(i).
We define the sign of P to be the sign of q.
We call a path system P vertex-disjoint if each vertex in the graph is passed through by at

most one of the paths in P .

Theorem 6.1. If G is a finite acyclic weighted directed graph with weight function w, choose
vertices a1, · · · , an and b1, · · · bn to be sets of sources and sinks, respectively. Define a matrix
M by mi,j = F (ai, bj). Then

det M =
∑

path systems P

sign(P )
n∏

i=1

W (pi) =
∑

vertex-disjoint
path systems P

sign(P )
n∏

i=1

W (pi)
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Proof. Fix some permutation q and look at what happens with the rook configuration cor-
responding to that permutation: we have

n∏
i=1

F (ai, bq(i)) =
n∏

i=1

 ∑
paths pi
ai→bq(i)

w(pi)


=

∑
(p1,p2,··· ,pn)

pipaths ai → bq(i)

n∏
i=1

w(pi)

But then summing over all of the rook configurations and taking into account permutation
signs we get

det M =
∑

path systems P

sign(P )
n∏

i=1

W (pi).

Now it remains to see that we can ignore non-vertex-disjoint path systems. To see this, take
P to be such a path system. Define another path system P̂ as follows: find the least i so
that pi crosses another path. Take the least j for which pi intersects pj; define new paths p̂i

and p̂j by swapping pi and pj over at the first point where they meet; i.e if pi is (u1, · · · , um),
pj is (v1, · · · vn), and the first time they intersect is when vk and wl both go into the same
vertex, then we set

p̂i =(u1, · · ·uk, vl+1, · · ·un)

p̂j =(v1, · · · vl, uk+1, · · · vm)

for k 6= i, j set p̂k = pk. Let P̂ = (p̂1, · · · p̂n). We have w(P ) = w(P̂ ), sign(P ) = − sign(P̂ ),

and (̂P̂ ) = P , so in the formula, each non-vertex-disjoint path system has a corresponding
system which exactly cancels out its contribution. Thus, we need only consider vertex-
disjoint systems. �

Theorem 6.2. The Cauchy-Binet formula: if n < k, A ∈ Mn,k(K), B ∈ Mk,n(K) then we
have

det(AB) =
∑

S⊂{1,··· ,k}
|S|=n

det(AS) det(BS)

where AS is the n by n submatrix of A given by the columns with indices in S, BS is the n
by n submatrix of B given by the rows with indices in S.

Proof. Let G be the directed graph with vertices a1, · · · an, b1, · · · bk, c1, · · · cn and edges ei,l

from each ai to each cl, and fl,j from each cl to each bj, with w(ei,l) = ai,l, w(fl,j) = bl,j.
Then applying the path configuration theorem to this graph. Fix a set S of n vertices from
the cl; notice that such sets correspond to a set of vertex-disjoint path configurations P (all
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vertex-disjoint P pass through precisely n of the cl). Then

det(AS) det(BS) =
∑

vertex disjoint P
passing through S

sign(P )
n∏

i=1

w(pi)

and summing over all of the S gives the result. �

Definition 6.6. If G is an undirected graph with no loops, define an incidence matrix of
I(G) for G to be a matrix whose ith row is labeled by the vertex vi of G and whose columns
are labeled by the edges of G, such that each column labeled by e contains only two nonzero
entries which are 1 and −1, and these entries are in the rows corresponding to the vertices
e joins.

Example 7.  1 0 −1
−1 1 0
0 −1 1


is an incidence matrix for the graph which is a “triangle”.

Notice that L = I(G)I(G)T is a matrix with

li,i = deg(vi)

and
li,j = −|{edges e joining vi to vj}|

Theorem 6.3. If G is an undirected simple graph then if L = I(G)I(G)T , and L1,1 denotes
the matrix obtained by deleting the first row and column of L, then det(L1,1) is the number
of spanning trees in G. This number is nn−2.

Proof. Not yet! �

7. Class 7

Review. Last time: Cauchy-Binet, which says if A is m× n and B is n×m, then:

det(AB) =
∑

S

det(AS) det(BS),

where the sum is over all S subsets with m elements of {1, . . . , n}.
Recall:

Definition 7.1. If G is a directed graph with no loops, define an incidence matrix of I(G)
for G to be a matrix whose ith row is labeled by the vertex vi of G and whose columns are
labeled by the edges of G, such that each column labeled by e contains only two nonzero
entries which are 1 and −1, and these entries are in the rows corresponding to the vertices
e joins.

Notice that L = I(G)I(G)T is the degree matrix minus the adjacency matrix, and we call
it L, the Laplacian. Not that det(L) is always 0 (summing all columns gives the zero vector),
so is not an interesting number. A more interesting number:

Recall the notion that L1,1 is the matrix obtained by deleting the first row and first column
from G.
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Matrix Tree Theorem.

Theorem 7.1. The number of different spanning trees of a connected graph G is det(L1,1).

Proof. Suppose that G has n vertices and m edges, and let J be the incidence matrix with
the first row removed. Then L1,1 is JJT . We will use the Cauchy-Binet formula, of course,
which tells us

det(L1,1) =
∑

det(JS) det(JT
S ),

where S ⊂ {1, . . . ,m} has size n − 1, specifying which columns (representing edges) are
kept. We need to show that det(JS) is ±1 if the edges in S form a spanning tree, and is 0
otherwise.

Suppose these n− 1 edges do not form a spanning tree. Then the graph G‘ consisting of
G’s n vertices with these n− 1 edges is disconnected, so has at least 2 components. One of
these components does not contain the vertex v1 (corresponding to the first row we removed).
When we sum the rows corresponding to this component, we get zero.

Suppose the subgraph G‘ is a tree. We can permute the rows and columns so that the
resulting matrix has 1’s on the diagonal, and is lower triangular. This shows that the
determinant is ±1. We can obtain these permutations by choosing an appropriate order on
the vertices an edges: Choose a leaf (call it v1) and its corresponding edge (call it e1). Now
remove these. Choose a leaf in the new graph, call it v2, and so on.

�

Application to Kn. For Kn,

L =


n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · n− 1

 .

From the exercise, the determinant is nn−2.

More Linear Algebra. Let V , W be vector spaces over a field k.

Definition 7.2. A map φ : V → W is linear if φ(αv1) = αφ(v1), and φ(v1 + v2) = φ(v1) +
φ(v2) for all α ∈ k and all v1, v2 ∈ V .

If φV → W is a linear map, we can also define two important sets associated to φ.

Definition 7.3. The kernel of φ is the set ker(φ) = {v ∈ V | φ(v) = 0}.

Definition 7.4. The image of φ is the set im(φ) = φ(V ) = {w ∈ W | ∃v ∈ V s.t.φ(v) = w}.

The image and kernel are subspaces.

Lemma 7.1. If S spans V , then φ(S) spans φ(V ).

Lemma 7.2. Let B be a basis for V , and let f : B → W . Then there is a unique linear
map φ : V → W which extends f .

Lemma 7.3. Let φ : V → W be linear. Then the following are equivalent:

(1) φ is injective
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(2) ker(φ) = 0
(3) S ⊂ V is linearly independent implies φ(S) is.

Lemma 7.4. dim(V ) = dim(W ) if and only if V is isomorphic to W .

8. Class 8

Question 1. How is every matrix a linear map? If A is a n× k matrix, then A determines
a function fA : Kk → Kn given by fA(v) = A · v ∈ Kn, where v ∈ Kk.

Definition 8.1. A linear transformation is a linear map V → V . (Note that the source and
target are the same.)

Example 8. (1) Euclidean transformations are linear transformations.
(2) Fix a basis, and ‘stretch’ (by a possibly different amount) along each basis vector.

(These are the diagonalizable linear transformations.)
(3) Rotations (most of these are not diagonalizable).

Question 2. What does a linear transformation look like? We’ll try to decompose the linear
transformation into ‘indecomposable’ parts, and then understand the indecomposable linear
transformations.

Definition 8.2. Let ϕ : V → V be a linear transformations, and let U be a subspace of V .
Then U is invariant (or ϕ-invariant) if for all u ∈ U , ϕ(u) ∈ U .

Example 9. If ϕ : V → V is a rotation along some axis, what are the invariant subspaces
of ϕ? The axis of rotation and the plane perpendicular to the axis of rotation.

Definition 8.3. If ϕ : V → V is a linear transformation, then an eigenvector of ϕ is a
non-zero vector v such that ϕ(v) = λv for some λ ∈ K. λ is known as the eigenvalue of v.
(Note that this is equivalent to saying that the span of v is ϕ-invariant. So, eigenvectors are
the same thing as one-dimensional invariant subspaces.) Note that we allow λ = 0.

Note that if U is an invariant subspace of ϕ, then ϕ restricts to a linear transformation
from U to itself. Now, the question arises: if we’ve found one invariant subspace, what
happens to the rest of the space? For this, quotient spaces would be nice; we’ll come back
to it later.

Today, we’ll look at symmetric matrices, and we’ll see that they’re ‘nicer’ than arbitrary
matrices. We’ll define the standard inner product on Rn; later, we’ll introduce a generaliza-
tion, just as vector spaces are generalizations of Rn.

Definition 8.4. If v, w ∈ Kn, then the standard inner product of v and w is

〈v, w〉 = vt · w ∈ K.

(Here, we’re thinking of v and w as n× 1 column vectors).

Now, we’ll express some geometric notions in terms of the inner product.

(1) What does it mean if 〈v, w〉 = 0? This happens if and only if v and w are orthogonal
(denoted v ⊥ w).

(2) What is 〈v, v〉? It’s the square of the Euclidean length of v. So, v has length 1 if and
only if 〈v, v〉 = 1.
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Definition 8.5. We say that a basis {b1, . . . , bn} of V is orthogonal if 〈bi, bj〉 = 0 for i 6= j,
and we say that an orthogonal basis is orthonormal if, in addition, 〈bi, bi〉 = 1. (Note that
the orthonormal bases of Rn are just rotations of the standard basis.)

The goal for the day is the following theorem.

Theorem 8.1 (Spectral Theorem). If A = At is an n× n real matrix, then there exists an
orthonormal basis {b1, . . . , bn} and constants λ1, . . . , λn ∈ R such that Abi = λibi for all i.
(In other words, every symmetric matrix admits an orthonormal basis of eigenvectors.)

Lemma 8.1. For any matrices A and B (where the product makes sense),

(A ·B)t = Bt · At.

Proof. This is true by definition (just check by direct computation). �

Definition 8.6. If S ⊂ V is any subset, then we define the orthogonal complement of S to
be the set

S⊥ = {v ∈ V | v ⊥ s for all s ∈ S} .

Note that even if S is not a subspaces of V , S⊥ is (because the standard inner product is
bilinear).

Lemma 8.2. Every orthonormal system is linearly independent.

Proof. Suppose that {u1, . . . , uk} is orthonormal, and assume that
∑

αiui = 0. Then,

0 =
〈∑

αiui, uj

〉
= αj.

�

Lemma 8.3. If U is a subspace of Rn, then U has an orthonormal basis.

Proof. We’ll inductively construct increasingly large orthonormal subsets of U . By the pre-
vious lemma, they’re all linearly independent, so eventually we’ll get to a basis. Clearly we
can choose an orthonormal subset of U of size 1; just choose any vector of norm 1. Now,
assume we’ve constructed an orthonormal system {u1, . . . , uk} of U . If it doesn’t span the
whole space, let v be in U , but outside the span of {u1, . . . , uk}. Then, let λi = 〈v, ui〉, and
let v0 =

∑
λiui. Note that v − v0 is also outside the span of {u1, . . . , uk}. Moreover, for all

ui ∈ U ,

〈v − v0, ui〉 = 〈v, ui〉 − 〈v0, ui〉 = λi −

〈
k∑

j=1

λjuj, ui

〉
= λi −

k∑
j=1

λj〈uj, ui〉 = λi − λi = 0.

So, v−v0 is orthogonal to every ui. Thus, we can divide v−v0 by its norm to obtain a vector
uk+1 of norm 1 (still orthogonal to every ui, 1 ≤ i ≤ k), and we obtain a larger orthonormal
set {u1, . . . , uk, uk+1}. �

Lemma 8.4. If U is a subspace of V , then

(1) dim U⊥ + dim U = dim V , and
(2) (U⊥)⊥ = U .
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Proof. For the first part, first note that U ∩ U⊥ = {0}, since if v ∈ U ∩ U⊥, then 〈v, v〉 = 0,
so v = 0. Thus, dim U + dim U⊥ ≤ dim V . We know that

dim V ≥ dim(U + U⊥) = dim U + dim U⊥ − dim(U ∩ U⊥) = dim U + dim U⊥,

so it suffices to show that

U + U⊥ =
{
v + v′ | v ∈ U, v′ ∈ U⊥} = V.

To see this, let v ∈ V . Let {u1, . . . , uk} be an orthonormal basis of U , and let λi = 〈v, ui〉,
let v0 =

∑
λiui. Then,

v = v0 + (v − v0),

and v0 ∈ U , v − v0 ∈ U⊥, since for all ui ∈ U ,

〈v − v0, ui〉 = 〈v, ui〉 − 〈v0, ui〉 = λi −

〈
k∑

j=1

λjuj, ui

〉
= λi −

k∑
j=1

λj〈uj, ui〉 = λi − λi = 0.

So, v ∈ U + U⊥, as desired.
Now we’ll do the second part. Clearly U ⊂ (U⊥)⊥, since if u ∈ U , for all w ∈ U⊥,

〈v, w〉 = 0. On the other hand, dim U⊥ = dim V − dim U , so

dim(U⊥)⊥ = dim V − dim U⊥ = dim V − (dim V − dim U) = dim U,

so U = (U⊥)⊥ �

Corollary 8.1.1. If S is any subset of V , then (S⊥)⊥ is the span of S.

Question 3. Does every vector space have an orthonormal basis? Well, as stated this
question doesn’t really make sense, since not every vector space comes with an inner product.
So, we’re really asking if every inner product space has an orthonormal basis. (Note that
we’re talking about infinite-dimensional spaces here, since we answered the question above
for finite dimensional spaces.) What properties should our inner product have? It should
be bilinear, positive definite, and symmetric. We have to use Zorn’s lemma, since our space
may not have a countable basis. We use Zorn’s lemma on orthonormal systems with respect
to inclusion. Every chain has an upper bound, by taking the union. So, we have maximal
elements. Why does it span the space? We’re not really sure, because if we don’t span, we
may not be able add another orthogonal vector.

From here on out, we’re in the setting of the Spectral Theorem, so notation and assump-
tions are as in the statement of that theorem.

Lemma 8.5. If U is A-invariant, then U⊥ is At-invariant.

Proof. Let v ∈ U⊥, and let u ∈ U . Then,

〈u, Atv〉 = utAtv = (Au)tv = 0,

since Au ∈ U and v ∈ U⊥.
Since A is a symmetric matrix in the setting of the spectral theorem, then A = At. So, if

U is A-invariant, then U⊥ is A-invariant as well. �

Lemma 8.6 (‘Ugly’). Define

f(t) =
a + bt + ct2

d + et2
,

where d > 0. If 0 is a maximum point of f , i.e., if f(0) is a maximum, then b = 0.
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Proof. The ‘ugly’ proof is: take the derivative, you know that it must be zero at zero; this
implies b = 0.

The conceptual proof is: near zero, the t2 parts don’t matter, so f basically looks like a
line; it can only have a maximum at zero if it has slope zero. �

Proof. (Of the Spectral Theorem).
We claim that for any A-invariant subspace U , there exists a non-zero eigenvector u ∈

U of A. If we prove this claim, we’ll be done: pick an eigenvector from V ; look at the
orthogonal complement of this eigenvector, pick an eigenvector from here; take the orthogonal
complement of the first two eigenvectors . . . until we can’t any more. This will give an
orthonormal basis of V consisting of eigenvectors for A.

Define the Rayleigh-quotient:

R(x) =
〈x, Ax〉
〈x, x〉

=
xtAx

xtx
,

where x ∈ U is non-zero. Note that R(λx) = R(x) for all λ ∈ R×. So, if we know the value
of R on the unit sphere, we know the value everywhere. Let B be the unit sphere, i.e.,

B =
{
x ∈ U | 〈x, x〉 = xtx = 1

}
.

Now, B is compact (being closed and bounded) and R is continuous, so there exists u ∈ B
such that R(x) ≤ R(u) for all x ∈ B. We claim that u is an eigenvector. To do this,
we’ll show that u⊥ is A-invariant. Then this means that the space spanned by u is also
A-invariant, which means exactly that u is an eigenvector of A. So, let v ⊥ u, and define

f(t) = R(u + tv) =
〈(u + tv), A(u + tv)〉
〈u + tv, u + tv〉

=
〈u, Au〉+ 〈v, Au〉t + 〈u, Av〉t + 〈v, Av〉t2

〈u, u〉+ 〈u, v〉t + 〈v, u〉t + 〈v, v〉t2

=
〈u, Au〉+ 2〈u, Av〉t + 〈v, Av〉t2

〈u, u〉+ 〈v, v〉t2
.

(Note that in the above manipulations, we used that 〈v, Au〉 = 〈u, Av〉, which is true because
A is symmetric.)

Now, we know that f has a maximum at zero, since R has a maximum at u. Moreover,
〈u, u〉 > 0. Thus, by the ‘ugly’ lemma, 2〈u, Av〉 = 0, i.e., 〈u, Av〉 = 0, and u⊥ is A-invariant,
as claimed. �

Exercise 12. Let G be an undirected graph on n points with adjacency matrix A = A(G).
(So A = At.) By the Spectral Theorem, A admits a basis of eigenvectors; let λ0(G) ≥
λ1(G) ≥ · · · ≥ λn−1(G) be the eigenvalues of A. (We call these the eigenvalues of G.)

Oh no! Are “the eigenvalues of a symmetric matrix ” well-defined? We only showed that
there is an orthonormal eigenbasis; how do we know that someone else can’t find a different
eigenbasis that admits different eigenvalues? One approach is to show that the eigenvalues
are precisely the roots of the characteristic polynomial, which is independent of any choice
of basis. What’s another approach? Well, the eigenvectors of eigenvalue λ are precisely the
elements of the kernel of A − λI. We call these the eigenspaces of A, and we denote it Vλ.
In other words,

Vλ = {v ∈ V | Av = λv} .
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If λ 6= λ′, then Vλ ∩ ker Vλ′ = {0}. Moreover, if λ 6= λ′, then Vλ ⊥ Vλ′ : if v ∈ Vλ and v′ ∈ Vλ′ ,
then

λ〈v, v′〉 = 〈λv, v′〉 = 〈Av, v′〉 = 〈v, Av′〉 = 〈v, λ′v′〉 = λ′〈v, v′〉;
since λ 6= λ′, we must have 〈v, v′〉 = 0. So, if λ1, . . . , λj are the eigenvalues of A with respect
to some basis, then

V = Vλ1 + · · ·+ Vλj
.

Now, if µ is some other ‘impostor’ eigenvalue, then we should have Vµ is perpendicular to
every Vλi

; but the sum of these already spans V , so Vµ must be zero. Thus, the eigenvalues
are uniquely determined by the linear transformation.

9. Class 9

Some linear algebra.

Question 4. If A, B ∈ Mn(R) and AB = I, does it follow that BA = I?

If we think of the matrices as linear transformations from Rn to Rn, then if B(v) = w, we
have A(w) = v, so BA(w) = B(v) = w, and hence BA is the identity when we restrict to
the image of B. However, since AB = I, we must have that B is injective. Since injective
linear maps send bases to linearly independent sets, we have that the image of B is at least
n dimensional, and hence B is surjective.

If we have an orthonormal basis of a vector space, {u1, . . . un} and we let U = [u1| . . . |un]
be the matrix whose columns are the ui, then the condition that we have an orthonormal
basis is equivalent to UT U = I, which by the above observation is equivalent to UUT = I,
so, the rows of U also give us an orthonormal basis.

Eigenvalues of the adjacency matrix. Let G be an undirected graph on n points, A
the adjacency matrix of G, and let λ0(G) ≥ λ1(G) ≥ . . . ≥ λn−1(G) be the eigenvalues
of A. Multiplying a vector (whose entries represent quantities stored at each vertex) by
the adjacency matrix distributes the quantities around by sending the amount at vertex
vi to each of it neighbors while simultaneously taking in the sum of the quantities from
all neighbors. We can think of the situation like that of a town of forgetful gossips: they
tell their neighbors all of their secrets, but only remember what they have just been told
themselves.

Exercise 13. If G is d-regular, then λ0(G) = d.

Proof. We must show both that d is an eigenvalue and that no eigenvalue is larger. We have
that

(9.1) A

1
...
1

 =

d
...
d


because multiplying this particular vector by the adjacency matrix gives the number of
incoming neighbors. If we have some other nonzero eigenvector v = (v1, . . . , vn)T and let i
by the index of the vertex of largest absolute value, so |vi| ≥ |vj| for i 6= j. Then

|(Av)i| =

∣∣∣∣∣∑
j→i

vj

∣∣∣∣∣ ≤∑
j→i

|vj| ≤ d |vi| .
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Thus, the corresponding eigenvalue is at most d.
�

Note that we have proved even more than the statement of the problem: If G is d-regular,
then no eigenvalue has absolute value larger than d.

Lemma 9.1. If G is d-regular, then λ1(G) = d if and only if G is not connected.

Proof. Suppose that v = (v1, . . . , vn)T is a nonzero eigenvector with eigenvalue d. Let i be
an index such that vi ≥ vj for i =6= j. By considering −v if necessary, we may assume that
vi > 0 Then since 0 = (dv−Av)i = dvi−

∑
k vjk

=
∑

k(vi−vkj
) where the kj are the vertices

connected by an edge to i. By the maximality of vi, we have that all the terms in the sum
are non-positive, and thus are zero. Thus, vjk

= vi for all k. If G is connected, then this
argument shows that vi = vj for every j, so the eigenspace is one dimensional.

Conversely, if G is disconnected, then pick a component and let vi = 1 for i in the
component, and 0 otherwise. This shows that the dimension of Vd is at least the number
of components (and the argument above shows that the dimension is exactly the number of
components). �

This suggests that the eigenvalue gap λ0(G) − λ1(G) gives some kind of indication of
the connectedness of a graph. Another useful invariant which gives information about the
connectedness of the graph is the spectral radius, ρ(G) = max0<i<n |λi(G)|. If G is d-regular,
then we have that

d ≥ ρ(G) ≥ 2
√

d− 1 = ρ(Td)

where Td is the d-regular tree.

Theorem 9.1 (Alon-Boppana). If Gn is a sequence of d-regular graphs and |Gn| tends
towards infinity, then lim inf ρ(Gn) ≥ 2

√
d− 1.

It is an open problem whether for any given d, there are infinitely many G with ρ(G) <
2
√

d− 1.

Theorem 9.2. diam(G) ≤ log(n−1)
log(d/ρ(G))

if G is d regular on n points.

How can we prove this? Naively, we know that the are at most d(d − 1)k vertices of
distance k away from a given vertex, so we expect a logarithmic bound on diameter in the
best case scenario. This result shows that this is indeed the case when the spectral radius is
small. We will need a preliminary result before we can prove the theorem.

Theorem 9.3 (Cauchy-Schwarz). If x, y ∈ Rn, then 〈x, y〉2 ≤ 〈x, x〉〈y, y〉.

Proof. Since the equation is trivial if either x or y is zero, let us assume otherwise. Let Λ be
an unspecified parameter. Then

0 ≤ 〈x− Λy, x− Λy〉 = 〈x, x〉+ Λ2〈y, y〉 − 2Λ〈x, y〉

If we let Λ =
√

〈x,x〉
〈y,y〉 and divide the above equation by Λ we get

2〈x, y〉 ≤ 〈x, x〉/Λ + Λ〈y, y〉 = 2
√
〈x, x〉〈y, y〉.

This gives the desired inequality. �
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Remark 4. Note that, by the theorem of arithmetic and geometric means (or calculus), our
choice of Λ gives the smallest possible value for the right hand side, so no better result is
possible by picking a different value of Λ.

Now, we can prove the theorem.

Proof. Let A be the adjacency matrix of G, and let u0, . . . un−1 be an orthonormal basis of
eigenvectors with eigenvalues λi(G), so that Aui = λiui, uT

i ui = 1, and uT
i uj = 0 when i 6= j.

Let Ui = uiu
T
i . These Ui have several interesting properties:

• UiUj = uiu
T
i uju

T
j = ui0u

T
j = 0

• UiUi = uiu
T
i uiu

T
i = uiu

T
i = Ui

• AUi = Auiu
T
i = λUi

•
∑

λiUi = A
•
∑

Ui = I

We can see the last two properties by applying both sides to each of the uj and noting that,
if two linear maps agree on a basis, then they are the same.

Additionally, we note that (An)ij is the number of n-step paths from i to j.
Therefore, if all the entries of Am are nonzero, then the diam(G) ≤ m. However, using

the properties of the Ui we have

Am =
(∑

λiUi

)m

=
∑

λm
i Ui

Because (1, 1, . . . , 1)T has eigenvalue λ0(G), we can choose u0 = (1/
√

n, 1/
√

n, . . . , 1/
√

n)T ,
and hence

U0 =

1/n · · · 1/n
...

. . .
...

1/n · · · 1/n


Using this and the fact that λ0 = d, as well as the definition of the spectral radius ρ, we

have

|(Am)rs| =

∣∣∣∣∣dm/n +
∑
i>0

λm
i (Ui)rs

∣∣∣∣∣
≥ dm/n−

∣∣∣∣∣∑
i>0

λm
i (Ui)rs

∣∣∣∣∣
= dm/n− ρm

∣∣∣∣∣∑
i>0

(λi/ρ)m(Ui)rs

∣∣∣∣∣
≥ dm/n− ρm

∑
i>0

|(Ui)rs|

Let us estimate
∑

i>0 |(Ui)rs|. Taking the sum to include i = 0 as well just increases the
value by 1/n, so we will estimate

∑
i |(Ui)rs|. If we let uij denote the jth coordinate of ui,

then by Cauchy-Schwarz,
∑

i |(Ui)rs| =
∑

i |uiruis| ≤
√

(
∑

i u
2
ir) (
∑

i u
2
is). However, if we let

U be orthogonal the matrix whose columns are the ui, then the jth row is (u1j, . . . , unj), and

since the rows of U form an orthonormal basis,
√

(
∑

i u
2
ir) (
∑

i u
2
is) = 1.
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Therefore, (Am)rs ≥ dm/n−ρm(1−1/n) which is greater than zero if dn/n > ρm(1−1/n) ⇔
(d/ρ)m > n− 1 ⇔ m ≥ log(n− 1)/ log(d/ρ) �

The theorem is useless if ρ = d. There are two ways that this can happen. The first, as
we have seen, is if λ1 = d, which happens if G is not connected. The second is if (−d) is an
eigenvalue.

Exercise 14. If G is d regular, then the adjacency matrix has an eigenvalue of (−d) if and
only if G is bipartite.

Of course, if G is bipartite, then Am will have zeros in it for any m, because after an even
number of steps, one ends up in the part one started in, and in an odd number of steps, one
ends up in the other part. Therefore, we see that in the two cases that the theorem tells us
nothing, the method of proof has no chance of yielding interesting information.
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