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1. LECTURE 1

Definition 1.1. If G(V, E) is some graph then G = (V, E) is the graph with the same vertex
set V, but for which we have {7,j} € E"iff {4, j} ¢ E.

Example 1. K, is the graph on n vertices with no edges. K, is the graph on r + s vertices
with two components which are K, and Kj.

Definition 1.2. If G is a graph, and v, w are two vertices of G then we write v ~ w (or
v ~¢ w) to indicate that they are joined by an edge.

With this notation a graph isomorphism between G = (V, E) and H = (W, F') as a map f
from V to W so that v ~qg w iff f(v) ~gy f(w).

Consider the problem of isomorphism: to show two graphs are isomorphic it suffices to
find an isomorphism; whereas if two graphs on n vertices aren’t isomorphic, a naive proof of
this fact must show that none of the n! bijections on vertices are isomorphisms. Therefore
it is desirable to find other methods to exhibit the fact that two graphs are non-isomorphic.

Definition 1.3. A graph G is k-colorable if we can assign colors from a choice of k to the
vertices of G in such a way that no two adjacent vertices are the same color.

Consider the two graphs on six vertices pictured:
They are not isomorphic, which we can see by noting that the left graph cannot be 2-
colored (it has a triangle), whereas the right-hand one can be; implicit in this is the fact
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FiGURE 1. Two nonisomorphic graphs
that 2-colorability is an isomorphism ¢nvariant. This means that any two graphs which are
isomorphic are either both 2-colorable, or neither is.

Example 2. A particularly famous graph is the Petersen graph. This graph is often used
as a counterexample to conjectures in graph theory.

FIGURE 2. The Peterson graph

Exercise 1. Are there any graphs which are self-complementary (i.e. G isomorphic to G)?

Exercise 2. If G is a graph on n vertices and is self-complementary then show that n =0
or n =1 modulo 4. n = m modulo k£ means that k divides n — m.

Definition 1.4. If G is a graph then we define the diameter of G = (V, E) to be diam(G) =
max, ey distg(v, w) where distg (v, w) is the minimum length of a path joining v, w in G.

Exercise 3. If G is disconnected then diam(G) < 2.
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Exercise 4. Find the minimal k so that min(diam(G),diam(G)) < k for all graphs G.
Notice first that k£ > 2 by finding a counterexample.

Lemma 1.1. If G is a d-regular graph on n vertices and diam(G) < 2, then n < d* + 1

Proof. Consider the case of one vertex; it has d neighbors, each of which have a further d — 1
neighbors. In the case that all of these vertices are distinct, we have 1 +d+d(d—1 =)d*+1
by summing these values. 0

1 d d(d-1)

FIGURE 3. A vertex in a d-regular graph

Now we ask the obvious question: can we manage to have equality in this equation? If so,
when?

In the case d = 1,n = 2 the bound is attained by a single edge joining 2 vertices. For
d = 2,n =5, the pentagon attains the bound. For d = 3,n = 10 Petersen’s graph is the only
example. A characteristic of all of these graphs is that they all exhibit a surprising amount
of symmetry. For instance:

Exercise 5. Show that Petersen’s graph has 120 automorphisms (an automorphism of a
graph G is an isomorphism of G' with itself).

There are no more examples which attain the bound until the case d = 7,n = 50; this
graph is known as the Hoffman-Singleton graph. There is at most one more d for which a
graph satisfies our hypotheses. We'll devote the rest of the day to proving this.

Recall that if A, B € M, (K) then tr(AB) = tr(BA).

Exercise 6. There are matrices A, B, C' for which we have tr(ABC) # tr(ACB).

Definition 1.5. Two matrices A, B € M, (K) are similar if there’s an invertible matrix

C € M,(K) so that B = C~'AC. Denote this by A ~ B.
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Definition 1.6. A matrix A € M,,(K) is diagonalizable if it is similar to a diagonal matrix;
i.e. one for which the off-diagonal entries are all 0.

Lemma 1.2. If A, B are similar then tr(A) = tr(B) and det(A) = det(B).

Proof.
tr(C'AC) =tr(ACC™)
=tr(Al)
=tr(A)
and the same proof holds for the determinant as well as trace. O

Recall that if A is n by n symmetric with eigenvalues \; > --- > A\, then
Z Ai =tr(A) and H Ai =det A
and we can choose an orthonormal eigebasis u; - - - u,, so that Au; = \;u; for each 7.
Lemma 1.3. If A is a symmetric real matrix then it is diagonalizable.
Proof. We can write
U= [ul Uy - un]

with eigenvectors as columns. Then we have

N O oo 0
0 X .-+ O
AU:A[AUI Aug -+ Aun}:U L )
0 0 - M\,
so that A = UDU™!, for D the diagonal matrix given by the eigenvalues. O

Lemma 1.4. If a,b,c,d,x € Z and az*+bx3+cx’+dr—15 = 0 then x € {41, +3, £5, +15}.

Proof.
15 = x(az® + bx® + cx + d)
so the right side consists of factors of 15. U

Lemma 1.5. If G is d-regular with d? + 1 vertices and diameter at most 2, then each pair
of vertices which are not adjacent have a unique common neighbor, and any two which are
adjacent have no common neighbor.

Proof. Consider the counting method which led us to the bound d? + 1; this bound can
only be attained if all of the vertices are counted exactly once. The above “forbidden
occurrence” would mean that some vertices were counted twice as we built our tree of
adjacent vertices. 0

Theorem 1.1. (Hoffman-Singleton) If G is d-regular with d* + 1 vertices and diam(G) < 2
then d € {1,2,3,5,7,57}.
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Proof. Let A = (a;;) be the adjacency matrix of G. Then write A> = B = (b;;). The (i, 7)
entry of B is the number of common neighbors of vertices ¢, j, since we have

n

bij = E ik

k=1

Thus we have b; = d for each 4, and for ¢ # j we have b;; = 1. Let J be the n by n matrix
whose entries are all 1. We have

A2 A=(d-1DI+J

. Now the spectral theorem tells us that the maximal eigenvalue of our graph is A\; = d, and
that the eigenvector corresponding to it is

1
1
Uy =
1
Now construct the rest of an orthogonal eigenbasis us, - ,u, so that Au; = A\u;. Then

apply u; on the right of the equation to get
A?u; 4 Aug = (d — Du; + Ju,
and note that for ¢ # 1 Ju; = 0 because u; is orthogonal to each row of J. Therefore we get
Mg + Nug = (d — Dy
and hence
M4\ =(d-1).
Therefore each eigenvalue other than the first is one of

 —1++4d-3 \  —1-+/4d-3
n 2 T 2

and assigning multiplicity m; to the first possibility and ms to the second, we get

At

1+mi+me=d+1
by counting the eigenvalues, and
trA=d+mAy +maA_ =0.

These equations in my, my are independent if A\, # A_. But this cannot happen, because
4d — 3 # 0. We can write s = v/4d — 3 for convenience. Then we have

_& i —my
2 2

so that either s is rational (and hence integer) or m; = ms.

s = —d

In the case that m; = my we get d2—2 = —d and therefore d = 2. This corresponds to the

pentagon.
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Finally, suppose that s is an integer. We get
d? — (my —mgy)s = 2d

and then, since s? + 3 = 4d,
2 3 2 2 3
(S; ) —(ml—m2)5—2(si ):O

s — 25 —16(m; —my)s —15=10
and using our earlier result we see that s € {1, 43, +5,+15} which correspond to d €
{1,3,5,7,57} U

which expands to

Finally, some exercises:

Exercise 7. Show that if Vi, V5 are vector subspaces of W then V; + Vo = {v; + va | vy €
Vi, v € Vo} is also a subspace of .

Exercise 8. Prove the modular equation: dim Vj +dim V5, = dim V; Ndim V5 4 dim(V; + V43)
with V1, V5 as above.

Definition 1.7. A linear map between vector spaces V, W over K is a map f from V to W
for which we have f(v+w) = f(v) + f(w), and f(av) = af(v) fora € K. If V=W we call
f a linear transformation.

Exercise 9. Find a linear transformations f, g on a vector space V for which we have fg =TI
but gf # I for I the identity transformation.

The last exercise may be aided by considering the fact that for matrices A, B € M, (R)
AB — BA = [ cannot hold; this rules out easy finite-dimensional examples. As a further
hint consider R[X], the vector space of polynomials with real coefficients.

2. LECTURE 2

Exercise 10. Prove the triangle inequality (d(x, z) < d(z,y)+d(y, z)) for the distance func-
tion defined on R™ by d(x,y) = ||z — y||, where the norm || - || is defined by ||(x1, ..., z,)|| =
(Do @)z
Definition 2.1. Given an n x n matrix, we define the Rayleigh quotient R (a function
defined on R™) by

2T A

R(z) = o

Note that R attains its maximum over R" on the unit ball, since R(cx) = R(x).

Let A be an n x n real symmetric matrix. Then there are n eigenvalues (counting multi-
plicity). Let us order the eigenvalues of A from largest to smallest, A\g > A\ > -+ > A\, 1.
We proved the Spectral Theorem by first proving:

Theorem 2.1.

Ao = max R(z) = max R(x).
o = max R(z) = max R(x)

We proved in class that:



Theorem 2.2.
A1 = max R(z),

xlug

where ug is the eigenvector corresponding to A.
More generally,

Theorem 2.3.
Ai = max R(z),

zlug,...,ui—1

where u; is the eigenvector corresponding to A;.
By applying this to the matrix —A, we also obtain:

Theorem 2.4.
An—1 = min R(x).
L )
The following theorem is important for providing a characterization of the eigenvalues
that does not make reference to the eigenvectors:

Theorem 2.5. Courant-Fischer min-max theorem. With the above notation,

Ai = max min R(x)
Ww<k®, | zew,

dim(W)=i+1 \ 270
(The notation ‘<’ means ‘subspace’.)

Exercise 11. Let A be the adjacency matrix for a graph with n vertices, whose eigenvalues
are \g > Ay > --- > \,_1. Remove a vertex and all of its edges, and let pg > -+ > p,_o.
Then

Ao > o = AL 2> fin =00 2 flp—2 = Ap_1.

Exercise 12. Let A\g be the largest eigenvalue for the adjacency matrix of a graph G, deg,,,
the average degree of GG, and deg, .. the maximum degree of G. Then

degavg < /\0 < degmax'
Claim 1. If A and B are n x n matrices and AB = I, then BA = 1.

Example 3. The above claim does not hold for linear transformations in infinite dimensions:
For example, in R[z], take the integration operator L defined by Lf(z) = fa? f(t)dt, and the
differentiation operator D. Then DL = I but LD # I.

Theorem 2.6. For an n x n matrix, the following are equivalent:

e A has a right inverse

o rank(A) =n

e A has a left inverse

e A has a (two-sided) inverse
e det(A) # 0.

If any (or all) are satisfied, A is ‘non-singular.” Otherwise, A is ‘singular.’
Exercise 13. (Dimension of the solution space of a system of homogeneous linear

equations.) Let U = {z | Az = 0} = ker(A). Then show that dim(U) = n — rank(A).
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More about eigenvalues: A is an eigenvalue of A iff there is x # 0 so Ax = Az iff there is
x so (A[ — A)z = 0 iff A\ — A is singular iff det(A\] — A) = 0.

A:B g}

Then det(A — AI) = A2 — 6\ + 1, which has roots 3 + /8.

Example 4. Let

Definition 2.2. Given a (square) matrix A, the the characteristic polynomial f, is defined
by

fa(t) =det(tl — A).
Theorem 2.7. Given a matrix A, A is an eigenvalue of A iff f4(\) = 0. (Note that in C,
there always exist solutions to this.)

Exercise 14. Let
no_ [Cos(oz) —sin(a)}

sin(a)  cos(«)
Find the characteristic polynomial, eigenvalues, and an eigenbasis.
Theorem 2.8. (Cayley-Hamilton Theorem.) For any (square) matrix A, f4(A) = 0.

Exercise 15. Prove this theorem for symmetric real matrices.

Definition 2.3. Over C, f4 will always factor as [] (¢t — \;)*, where the \; are distinct.
Then k; is the algebraic multiplicity of \;.

Definition 2.4. Given A, let V) = {z | Ax = Ax}. Then the geometric multiplicity of \ is
dim(V)) = n — rank(Al — A).

Exercise 16. The algebraic multiplicity is always greater than or equal to the geometric
multiplicity. Find a 2 x 2 matrix where this inequality is strict.

Exercise 17. For an n x n matrix A over C, the following are equivalent:

e The algebraic and geometric multiplicities of the eigenvalues of A are all equal.
e The matrix is A diagonalizable.

3. LECTURE 3

We begin with three exercises.

d 1 ... 1
dy
Exercise 18. Let A = } . Show that if each d; > 1, then A is nonsingular.
1 1 ... d,

Exercise 19. Suppose that B is an n X n matrix with B = BT, bi = 1 and b;; < 1 for all
1 # 7. Then B is not necessarily nonsingular.

Exercise 20. Prove that there exists an n X n matrix C' with ¢; > 0 for all 4, ¢;; < 0 for all
i # j and rank(C) < 3
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Theorem 3.1. For any basis ey, ... e, € V and n (not necessarily distinct) vectors wy, ... w, €
W, there is a unique linear map ¢ : V- — W with ¢(v;) = w; for all i.

Proof. Suppose that we have such a . If v € V| then we can write v uniquely as v = > a;e;.
By linearity, ¢(v) = ¢(>_ ae;) = > ayp(e;) = Y a;w;. Thus, ¢ must be unique.

Now, define ¢ by the equation ¢(>_ a;e;) = > a;w;. We must verify that ¢ is linear and
that p(e;) = w;. We leave this as an exercise. O

Given a linear map, ¢, let ker(p) = {v € V | p(v) =0} C V, and let im(p) = {¢(v) | v €
V} € W. These are both subspaces.

Theorem 3.2 (Rank-Nullity Theorem). dim(ker ¢) + dim(im ¢) = dim V’

Proof. Let eq,...e; be a basis of ker ¢, and extend this to a basis of V', ey ...ex, ex41...€,.
We have that ¢(e;) = 0 if i < k. We wish to show that {¢(e;) | i > k} is a basis for im .
We must show that this set both spans and is linearly independent. We leave this as an
exercise. 0

We also define rank ¢ = dim(im ¢).

If Ais a k x n matrix with coefficients in a field F', then A defines a linear map ¢4 : x —
Az € F*. Then kerpa = {x € F" | Az = 0} = M, the solution space of a system of
homogeneous linear equations. imp4 = {Az | z € F"} is the column space of A, the span
of ay,...a,. The rank-nullity theorem then tells us that dim M 4 + rank(A) = n.

Suppose that ey, ...e, is a basis for V and fi,... fi is a basis for W. Then we can encode
the information of ¢ as a matrix relative to these bases as follows. phi(e;) is a vector in W,
and we can thus express it in coordinates relative to our basis for W. These coordinates
form the ith column.

[Ples = [lelen)]s, - - [e(en)]/]]
Exercise 21. If ¢ : V — W, (ey,...e,) is a basis of V, (f1,..., fx) a basis for W. Prove
that, for v € V, [o(v)]f = [@]ef[V]e-
Example 5. Let V = Ry[z] := {ax? + bx + ¢ | a,b,c € R} and define ¢ by ¢(f) = f’ Let

us express ¢ as a matrix relative to e = f = (1,z,2?). Since p(1) =0-1+0-2+0- 22
o) =1-1+0-2+0-2% and p(2*) =0-1+2- 2+ 0 - 22, the matrix is

o O O
SO =
o N O

We could have chosen a different basis to work with respect to, such as (22, (z+1)?, (z+2)3),
and the resulting matrix would have looked very different. The resulting computation of the
matrix would have been drastically harder. However, there are still numerical invariants of
the linear map, such as determinant and trace, which remain independent of basis. To see
why, we must see how our matrix changes if we change our basis.

Suppose that we have two bases for V', (ey,...e,) the old basis and (€], ...,e!,) the new
basis. Let 0 : V' — V be the linear map sending e; to e,. Note that o is invertible because
it sends a basis to a basis. Then, from o(> a;e;) = > a;el, we see that [0(v)|new = [V]old-
If we let S and S™! be the corresponding matrices, then we have S™!'v]oq = [v]new and

Svlnew = [V]ola- If we have an old and new basis for W, we can do a similar thing there,
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denoting the transition matrix by 7. Then, if ¢ : V' — W is a linear map, we can relate the
matrix form in the old basis to the matrix form in the new basis as follows.

Theorem 3.3. [p]uew = T ¢]o1aS

Proof. We can prove this by applying both sides to a vector. We leave the details as an
exercise. U

Corollary 3.3.1. If ¢ : V — V is a linear map, then under a change of basis, [¢]new and
[¢]ola are similar matrices, and given two similar matrices, they represent the same linear
transformation under different bases.

Example 6. Let p, be the linear transformation which rotates the plane by an angle a. If
e; and ey are the standard basis vectors, then

[pa] = cosa —sino
Pe sina  cosa

With respect to the basis (eq, pa(€1)), then since p,(e1) is the angle bisector of e; and
Pa(paler)), basic geometry and trigonometry allows us to show that the corresponding matrix

is
(pa] = 0o -1
Pal =\ 1 9cosa

Exercise 22. Given linear maps V > W Y Z and corresponding bases e, f, g, then [¢]., =

[ sglpler

Now, using that p,+3 = papg, We can recover the addition identities for sin and cos.
Exercise 23. Find the eigenvalues and eigenvectors of p,.

Given a matrix A, let fa(t) = det(tI — A) be the characteristic polynomial of A.
Theorem 3.4. If A~ B, then fa(t) = fp(t).

Proof. We have some matrix S such that B = S 'AS, so t[ — B=tI — S7'AS = S71(¢tI —
A)S, hence det(t] — B) = det(S™'(tI — A)S) = det(tI — A) O

Note that, from f4(0) = det(—A) = (—1)" det(A), we see that (—1)™ det(A) is the constant
term of f4(¢), and from using rook configurations to calculate the determentent, we see that
the coefficient of ¢ is 1 and the coefficient of "' is — tr(A). Additionally, we see that if \;
are the eigenvalues of A. counted with multiplicity, then Y~ \; = tr(A) and [] \; = det(A).

Exercise 24. If ey, ...e, are eigenvectors of an operator A, and Ae; = \e;, with \; # A,
when ¢ # 7, show that the e; are linearly independent.

Exercise 25. Find a 2 x 2 matrix which is not diagonalizable.

Exercise 26. For what p is 2% + 1 irreducible over the field Z/pZ, p prime.
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4. LECTURE 4
Exercise 27. Prove that 22 +1 is irreducible over F, = Z/(p) if and only if p = —1 (mod 4).
Exercise 28. Suppose that A is an n x n matrix (over R or C). Then,

det(e?) = e 4.

Proposition 4.1. Suppose that ¢: V — V is a linear transformation and vy,...,v; are
eigenvectors (¢(v;) = A\v;) with distinct eigenvalues (\; # A; for ¢ # j). Then, show that
vy, ...,0; are linearly independent.

Proof. Suppose that

k
E ;0 = O,
i=1

we’ll show that oy = -+ = o = 0. Applying ¢ to both sides of the above equation gives

k k k
0=p0)=¢ (Z Ozivz) = Zaigo(vi) = Z QN ;.
i=1 i=1 i=1

Applying ¢ again gives

k
0= E Oéi/\?’l]i.
i=1

By induction, we can deduce that

k
— E J
0= (l/i)\z» V;
=1

for all j. Since the determinant of the Vandermonde matrix

1 1 1 e 1
A A A3 N
det | A A2 A o A =Tw— A #0
: : : . : i>j
)\llffl )\12671 )\gfl . )\I]zfl
is non-zero (recall \; # A; for all ¢ # j); this implies that every a; = 0. (One could also do
this proof by induction.) O

Definition 4.1. A Fuclidean space (over R) is a vector space V (over R) equipped with a
positive-definite inner product

VxV —R
(z,y) — (2, ¥).

Recall that the assignment (z,y) — (x,y) should be bilinear and symmetric. Positive definite
means (x,x) > 0 with equality if and only if x = 0.

Example 7. Let V = R[], and given f, g € R[], define

(f,9)= /0 f(t)g(t)at.
11



With this definition, you should verify that all the conditions for a positive-definite inner
product hold.

In fact, the same definition works if we take f, g € C[0,1], i.e., if we consider all continuous
functions on [0, 1].

Also, you should check that R[x| with inner product given by

()= | fog(e “at
is a Euclidean space.

Exercise 29. Show that if we equip C|0, 27| with inner product given by

(f.g) = / " fo.

Show that 1, cosz,sin z, cos 2z, sin 2z, . . . are orthogonal.

Proposition 4.2. Show that if uy, ..., u; are non-zero pairwise orthogonal vectors, then the
are linearly independent.

Proof. Suppose that

k
E ;U = 0.
i=1

Then,

k k
0= <Uj,ZOéiui> = Zai<uj,ui> = Oéj<Uj,Uj>,
=1

i=1
so aj = 0. O

Definition 4.2. If V is a Euclidean space, we define the norm of x € V' to be
lzl] = /{2, z).
We define the distance between two vectors x and y to be
||z —yll.

Exercise 30. Show that with the definition above, the distance satisfies the triangle in-
equality.

Exercise 31. Show that in any Euclidean space, the Cauchy-Schwarz inequality holds:

(= 9) | < [l |]yl|

with equality if and only if = is a scalar multiple of y.
This gives an enormous number of integral inequalities. For example,

\ / Z f(t)g(t)etzdt' < \/ / Z slepe-ar [ Z S(Eerdt
12




Gram-Schmidt Orthogonalization. The input is a sequence of vectors in a Euclidean
space, say vy, Vg, ..., and the output is another sequence of vectors by, bs, ... such that

(1) for all k, the span of vy, ..., vy is equal to the span of by, ..., b
(2) for all ¢ # 7, (b, b;) =0
(3) v — by, is in the span of vy, ..., vgp_;.

In fact, (3) implies (1), and (2) and (3) uniquely determine the output. By (3), we know
that b; = v1. Now, by (3) again, we know that ve — by is in span of vy. In fact, by must be
on the line v9 — awy, which is the line parallel to v; that passes through vy. Using (2) allows
us to determine o uniquely. Uniqueness of the other vectors follows similarly.

Explicitly,

b1 = U1
(b1, v2)
bg = Vg — b1
[164]”
(b1, v3) (ba, v3)
b3 = V3 — 1 — 2
[104]” 16"

(The only caveat is if one of the ||b;||> = 0, but in this case, b; = 0, so it doesn’t matter
which coefficient we take.) Note that the order of the input matters.

Exercise 32. Orthogonalize 1, z, 22, 2® with respect to the inner product

(f,9) Z/Olfg-

Exercise 33. When will b = 07 b, = 0 if and only if v is in the span of vy,...,vp_1.

If our input is a basis, our output an orthogonal basis, since the output has the same span
and same number of elements as the input basis. To turn this basis into an orthonormal
basis, just normalize the vectors: divide each vector by its length. So, we’ve proved that
every (finite-dimensional) Euclidean space has an orthonormal basis. (This is not true in
infinite-dimensional spaces, but it is sort of true if we allow “infinite linear combinations”.)
In fact, let V' be a finite-dimensional Euclidean space with ONB ey, ..., e,. Let z = > a;e;,
and let y = > B;e;. Then,

(z,y) = Zzaiﬁj<€i,€j> = Z%ﬂz’ = @tﬁ-

So, this shows that V' is isomorphic as a Euclidean space or (isometric) to R™ with the
standard inner product.

Definition 4.3. An orthogonal transformation of a Euclidean space V is a linear map
@: V — V such that

{0z, py) = (x,y)
for all x and .

Exercise 34. All the (complex) eigenvalues of an orthogonal transformation have unit ab-

solute value.
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Exercise 35. Show that

lim Y
x7y_>0+

is almost always 1.

Exercise 36. What is the probability that two random positive integers are relatively prime?
Does this question even make sense? In other words, first compute the probability that two
random positive integers chosen from {1,...,n} are relatively prime, and then let n — oo.

Exercise 37. Find a sequence that is convergent in the Abel sense, but divergent in the
Fejer sense.
Recall that to compute the Fejer sum of a series ) a;, one computes the limit of the

averages
_ S+ 48N
=,

ON
where S; is the partial sum
Sj=a+--+aj.
To compute the Abel sum, one considers the power series

flz) = Z apx",
and computes the limit

lim f(x).

r—1—

Exercise 38. Find the determinant of the circulant matriz:

Qo a1 Qg -+ Qp-1
Qp—1 Gy ap -+ Ap-2
Qp—2 Gp—-1 Gy -+ Ap—3

ay a9 as - Qo

The way to compute the determinant is to find the eigenvalues. In fact, all circulant
matrices commute, so they have a common eigenbasis.

So, find the eigenvalues of this matrix, prove that all circulant matrices commute, and
find the common eigenbasis.

Exercise 39. Find a 2 x 2 matrix that is not diagonalizable over the complex numbers. In
other words, find A such that A is not similar to a diagonal matrix. (Recall that two matrices
are similar A ~ B if and only if there exists an invertible matrix S such that B = S71AS.)

Maybe
11
o= 1)

(02)

What’s the characteristic polynomial of the above matrix?

det (tgl t__12) — (= 1)(t—2).

14
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So, the eigenvalues of a triangular matrix are the diagonal entries. The above matrix is
diagonalizable, because we can take an eigenvector of eigenvalue 1 and an eigenvector of
eigenvalue 2, and we know these are linearly independent, since they are eigenvectors with
distinct eigenvalues. So, we conclude

L1y (10

0 2 0 2)°
We know that if A is diagonalizable,

A1

A2
A~ A3

An

where the \;’s are the eigenvalues of A. So, we know that B cannot be diagonalizable, since
if it were, it would be similar to the identity matrix, but the identity matrix is similar only
to itself.

Exercise 40. Show that there cannot be more than countably many pairwise orthogonal
functions in C[0, 1] with respect to the inner product

(,9) —/Olfg-

5. LECTURE 5

Exercise 41. Suppose that one has 13 coins of different weights such that, if you remove
any one coin, then the remaining coins can be arranged into two groups of six coins, with
each group of equal total weight. Show that each coin must have the same weight. (This
holds for weights in Z, R, Q, C, R[z]. What about Z/n?)

Exercise 42. Suppose that a rectangle is broken up into smaller rectangles such that each
subrectangle has at least one integer-length side. Show that the larger rectangle has at least
one integer-length side.

Exercise 43. (Generalized) Fisher Inequality. Suppose that A, A, ... A, are subsets of
{1,...,n}. Fix a # 0. Suppose that, for all i # j, |4; N A;| = a. Prove that m <n.

Recall that a Euclidean space (over R) is a vector space V' with a positive definite inner
product (—, —).

Definition 5.1. ¢ : V — V' is an orthogonal transformation if {(p(z), p(y)) = (x,y) for all
x,y € V. Such transformations are also called isometries or congruences of V.

We can define the angle between two vectors in analogy to R? by saying that (v, w) =
[o]] [ cos 6.

Exercise 44. If ¢ : V — V is a linear transformation such that ||pz|| = ||z|| for all z € V.
Then ¢ is an orthogonal transformation.

Lemma 5.1. Let O(V) be the set of orthogonal transformations of V. Then
15



(1) If p, v € O(V), then pyp € O(V),
(2) If p € O(V), then there exists ¢! € O(V).

Thus, O(V) is a group.

Proof. First, we show that ker ¢ = 0. Suppose that ¢(x) = 0. Then ||z| = ||¢(z)|| = ||0]] =
0 because orthogonal transformations preserve norm. Since our inner product is positive
definite, we must have x = 0. The other properties are straight forward. 0

In what follows, V' will not necessarily be Euclidean. Suppose that ¢ : V' — V is a linear
transformation, and U C V' is a subspace. Then we say U is an invariant subspace for ¢ if
p(u) € U for all u € U.

Let eq,...e, be a basis of U, and extend it to a basis ey, ...e, of V. If we express ¢ in
terms of this basis, then it is of the form

[l = (161 g)

where A is the matrix form of the restriction of ¢ to U. Conversely, if we can find a basis
such that [p]. has a 2 x 2 block upper triangular decomposition with the top left block a
k x k square, our first k vectors span an invariant subspace.

Using this, we see that if [p] is upper triangular (and not just block upper triangular),
then span(e;), span(ey, 3),...span(ey, . ..e,) are all invariant subspaces.

Remark 1. Note that if v # 0, then spanv is an invariant subspace if and only if v is an
eigenvector.

We can rephrase the upper-triangular property in terms of invariant subspaces by saying
that we have a maximal length chain of invariant subspaces {0} C U; C ... C U, = V. Such
a chain is called a flag.

Theorem 5.1. Over C, any matrix is similar to an upper triangular matrix.

Proof. To begin, we find an eigenvector. This gives us an invariant subspace of dimension 1.
We can then proceed by induction, the details of which is left to the reader. (Hint: Given
an invariant subspace U, then the set of equivalence classes v + U is a vector space which is
invariant under ¢.) O

Exercise 45. If n is even and A is an n X n matrix, then one can reduce the rank of A no
more than n/2 by changing no more n?/4 entries.

Exercise 46. For almost all matrices, changing fewer than n?/4 entries cannot yield a rank
of less than or equal to n/2.

Remark 2. The following problem is open. Find an explicit family of matrices such that
more than n'! entries need to be changed to bring the rank down below n/2. This problem,
one of matrix rigidity, was posed by Valiant around 1980.

Question 1. Given ¢ : V. — V and a basis e, how can we tell from [p]. whether ¢ is
orthogonal?

We rephrase orthogonality from (z, y) = ( (z), 0(y)) to [x]T[y] = [Az]T[Ay] = [z]T[AT] Ay.
This holds for every z,y if and only if [A]T[A] = I (why?)
16



Definition 5.2. If A € M,(R), then we say A is an orthogonal matriz if ATA=1.

Note that if the columns of A are a; and AT A = (b;;), then b;; = a] a; = {(a;,a;), so A is

(2
orthonormal if and only if its columns form an orthonormal basis. As we showed previously,

this is equivalent to the rows forming an orthonormal basis because any left inverse of an
n X n matrix is a right inverse.

Theorem 5.2. ATA=T< AT = A1 o AAT =]

cosa —sinao
—sina  cosa
is orthogonal, and the orthogonal matrix
cos —sina
sinaw —cosa

is a reflection. What is this a reflection about?

Exercise 47. The rotation

Exercise 48. In R?, every orthogonal transformation has an eigenvector.

Exercise 49. In R"”, every linear transformation has an invariant subspace of dimension at
most 2.

Definition 5.3. If S C V is a set of vectors in a Euclidean space, define S* = {v € V|
(v,8)Vs € S.

Exercise 50. S* is a subspace.

Exercise 51. If U C V is a subspace, then dim U + dim U+ = dim V. Furthermore, every
vector v can be written uniquely as v = u 4+ u* where v € U and u* € U+

Exercise 52. If ¢ € O(V), and U is an invariant subspace, then U~ is an invariant subspace.
Exercise 53. If U is a subspace, then U+ = U (if V is finite dimensional).

Exercise 54. In C[0,2n], then {1,cosx,sinz,cos2z,sin2z,...}t = {0} where (f,g) =
2
fgdx
0

Definition 5.4. We say ¢ : V' — V' is a symmetric transformation if {pz,y) = (zpy) for all
z,yeV.

Exercise 55. ¢ is symmetric if and only if [p|oxs = [¢]5xs
Exercise 56. If ¢ is symmetric and U is an invariant subspace, then U7 is invariant.

Theorem 5.3. If ¢ is a symmetric transformation, then ¢ has an eigenvector.

Proof. Consider the Rayleigh quotient R(z) = 2% Then if R(z) has a max at z, then z,

B
is an eigenvector. N

Exercise 57. Find a linear transformation and an invariant subspace U such that U+ is not

invariant. This can be done over R when the dimension is 2.
17



Theorem 5.4 (Spectral Theorem). If A € M, (R), AT = A, then there exists S € O(V)

such that
A - 0

STtAS = | .o
0 - A\,
In the next theorem and definition, assume that V' is a Euclidean space.

Theorem 5.5. For all ¢ : V' — V| there exists ¢» : V' — V such that, for all x,y € V,
(z,0y) = (z,y).

Proof. We leave this as an exercise. Note that if e is an orthonormal basis, then [¢].

[]F -

Definition 5.5. In the theorem, v is call the transpose or adjoint of v, and we write ¥ =

O

~

Corollary 5.5.1. ¢ is symmetric < ¢ = ¢, and ¢ is orthogonal < ¢! = T

Exercise 58. If A € O(n) (orthogonal matrices) and A € C is an eigenvalue of A, then
Al = 1.

Hermitian (Complex Euclidean) Spaces. Let V' be a vector space over C, and (—, —) :

V x V — C such that
o (z,y+2)=(z,y) + (x,2)
o (z,\y) = Mz, y)

o (1,y) = (y,7)
e (x,z) > 0 with equality if and only if x =0

Then we say that V' is a Hermitian space.
Example 8. On C[0,1], (f,g) = fol f(t)g(t)dt. On C*, (z,y) =T y.

T

Let A* = A

Exercise 59. If A = A*, then all eigenvalues of A are real and there exists an orthonormal
basis of eigenvectors.

Exercise 60. Redo everything we’ve done above with the spectral theorem, Euclidean vector
spaces and orthogonal transformations using Hermitian vector spaces and unitary matrices,
those such that B! = B*,

6. LECTURE 6

Problem 1. Let G be a graph with n vertices and A = (a;;) be its adjacency matrix with
eigenvalues A\g > ... \,_;. Denote average degree by dayerage = %, where d; is the
degree at the vertex 7. Show that Ao > daverage-

Quadratic Forms. Consider a matrix A = (a;;) and column vectors x and y, then

Ba(z,y) ==a"Ay =" mayy;

i=1 j=1
18



is called bilinear form. Indeed B, is linear in both x and y. In particular, when y = z, we
get

Qa(z) :== Ba(z,x) = Z ;T
ij=1
which is called a quadratic form. Observe that @ 4(z) doesn’t change if we replace the matrix
A by (A + AT)/2, therefore without loss of generality, we can assume that AT = A (A is
symmetric). Hence there is a 1-to-1 correspondence between real quadratic forms and real
symmetric matrices.

Example 9. Consider the set of points satisfying an equation of the form Q(z,y) = ¢, where
Q(x,y) = ax® = bry = cy? is a quadratic form, (z,y) € R? and c is a real constant. There
are a number of different geometric objects of this form.

° sz + g—; = 1 gives us an ellipse with semimajor horizontal axis of length a and semimi-
nor vertical axis of length b.

N

— 1;—; = 1 gives us an hyperbola centered on the origin.

mwl 8

e ry = 1 give us again an hyperbola centered on the origin, but with asymptotes the
Cartesian axes.

. 2—2 — Z—; = 0 gives two lines intersecting at (0, 0)

These are some examples of what we call conic sections on R2.

Example 10. Rotated ellipse.
The points (z,y) € R? satisfying 22 + 3zy + 10y*> = 1 correspond to a rotated ellipse C.
In terms of quadratic forms we have Q4(z,y) = 1 with matrix:

(1 32
A= (3/2 10)
The characteristic polynomial of this matrix is f4(t) = t* — 11¢ + 31/4 and the eigenvalues

are \jo = w. The eigenvectors v; and vy corresponding to these eigenvalues give the
directions of the axes of the rotated ellipse C. The semimajor axis has length a = 1/v/\
and the semiminor axis b = 1/4/Ay. To prove this last observation we go back to the general
setting.

Change of basis and quadratic forms. Let us observe what happen when we change from
an old basis e to a new basis €’. The linear transformation o : V' — V that sends e; to €]
gives us the matrix of change of coordinates S := [0]. = [[€]]c - [€L]e]. Then the relation
(7] = S7![x]. gives the the new coordinates of x in terms of the old coordinates. We will
write this as Tpew = S Tolq OF Told = SThew-

Then
Qz) = xOTldAxold = (anew)TA(anew) =7 (STAS)xnew,

new

and A’ = STAS is the matrix of the quadratic form in terms of the new basis.
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Observe that regarding A as the matrix of a linear transformation, under a change of basis
we get A” = S7'AS. Then A’ = A” just when ST = S~! ie. when S is an orthogonal
matrix that sends an orthonormal basis to an orthonormal basis.

We want to switch to the orthonormal eigenbasis. Let ¢’ denote such basis, then Ae; = \e!,
and the matrix of change of basis S is orthogonal. Moreover,

AS=A(e) ... e)=(Aey ... Ae))= (e} ... €,)D=5D,
where the matrix D is given by
A0 ... 0
0 X ... 0
0 0 ... A
Therefore,if 2, = (2,...,2!) then, with respect to the eigenbasis, we have

Q(SC) = xzewaneW = Z )‘le

i=1
Back to Example 10, we get that under the change to the eigenbasis:

2 2
Q(ac)—/\x'Q—l—)\x’Z—i—kﬁ
- 11 22_CL2 b27

with a = 1/4/A\; and b = 1/4/)e and the corresponding eigenvectors give the direction for
those axes as we claimed before.

Exercise 61. Consider an equation of the form F(z) = Q(z)+ L(x) +C = 0, where Q(x) is
a quadratic from, L(z) = a121 +. ..+ a,x, a linear form, and C' a constant matrix. Suppose
that the matrix A associated to @ is non-singular. Show that the curve {F(z) = 0} is a
translate of {Q(x) = const.}. In particular, this means that the nature of the curve can be
predicted from the quadratic form alone.

Observe that a symmetric matrix A is non-degenerate if and only if det A # 0 if and only
if none of the eigenvalues of A are zero.

Quadratic forms and graphs. Let us consider to the setting in Problem 1.Let () the quadratic
form associated to the adjacency matrix A = (a;;) of the graph G with n vertices and m
edges. Observe that the sum of the degrees of the vertices is given by

Zdi = Zzaij = Q(l);
i=1 i=1 j=1

where 1 = (1,...,1).
Moreover, after we prove the handshake theorem, we will see that Y, d; = Q(1) = 2m.

Theorem 6.1 (Handshake Theorem).

n (daverage) =2m.
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Recall that for the symmetric matrix A the largest eigenvalue Ay = max,o R(x), where

is the Rayleigh quotient. In particular, that implies that
@) Xd

0= 5
[[1]] n

average

which concludes the proof of Problem 1.

Exercise 62. Show that A\g = dayerage if and only if G is a regular graph (and therefore A
is an integer).

Definition 6.1. Given a matrix A, we define

© Ak
A._ A
e’ = —.
k!
k=0

Exercise 63. Prove that the series Y -, é—f converges for any matrix A. What are the
eigenvalues of the matrix e4?

Consider first the linear differential equation

T = azr,

where x = x(t), © = Z—f and a is a constant. Recall that the solution of such differential

equation is x(t) = ce™, where c is any real constant. Now translate this to a more general
situation: a matrix equation.

(1) = Ax(t),
where z(t)T = (x1(t),...,2,(t)) and A is an n X n matrix.

Exercise 64. Verify that the solution for this matrix differential equation is x(t) = e4C,
where C' is a constant matrix.

This general situation actually arises:
Example 11. Consider the linear differential equation of degree 2:
y=-y.

Observe that if we write 27 = (y, 1), we get

o (5) B <—yy) B (—y@/> B (—01 (1)) @) B (—yy) B (—01 (1)) -

which is a matrix equation.

Exercise 65. By solving this matrix equation for x, show that you can get that expected
solution for y: y = ¢; cos(t) + ¢ sin(t), with ¢; and ¢, constants.
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Example 12. The graph K, has adjacency matrix

01 ... 1
10 ... 1
S | =J-1,
11 ... 0
where [ is the n x n identity matrix and
1 1
J=1|: -
1 ... 1

Let us first get the eigenvalues of the matrix J. First observe that

1 ... 1 1 1
Do =N
1 ... 1 1 1
Therefore n is an eigenvalue with correspondant eigenvector (1,...,1)T. Any other eigen-
vector ! = (z1,...,2,) of J is orthogonal to (1,...,1)T, then it satisfies >\ ,z; = 0
and
1 ... 1 I X1
: : =0
1 ... 1 T T
Therefore, the eigenvalue for the eigenvector x is 0. Hence, J has eigenvalues Ay = n and
A1 = ... =\, = 0, where the eigenvectors with 0 eigenvalue generate the (n—1)-dimensional
space {Y_ I, z; = 0}. It follows that J — I, the adjacency matrix of K, has eigenvalues
M=n—1, A\ =...=)\,=—1. Observe that tr(J —I)=(n—1)+(-1)+...+(=1) =0

as expected.

Claim 2. If GG is connected then the largest eigenvalue is unique and it has an eigenvector
with all entries positive.

Proof. Consider A the adjacency matrix of G.

The largest eigenvalue is given by Ao = max R(z), where R(z) = £4z

Tz -~
R(u) = \. Then Au = \u, and we may assume without loss of generality that ||u||* = 1

and that the first non-zero coordinate of u is positive. If u? = (xy, ..., z,) has some negative
coordinate, we can take v = (|zy],...,|z,|) and observe that R(v) > )¢ which contradicts
the maximality of \g. Therefore, u has all coordinates non-negative.

Now suppose that Ay = A\g. Then the corresponding eigenvectors must have all coordinates
non-negative and be orthogonal to each other, which forces them to have disjoint support
and for instance at least one zero coordinate. The proof is concluded by citing the next
exercise. U

Suppose that

Exercise 66. If the eigenvector u associated to Ay has a zero coordinate, then the graph G

is disconnected.
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Example 13. Let G be the star graph with n vertices (the vertex vy is connected to each

vertex v; by an edge for ¢ = 1,...,n — 1. Let us find its largest eigenvalue. Since G is
connected, we know that \g is unique and if u” = (z1,...,x,) is such that Au = \gu, then
x; > 0. Moreover, the symmetry of the graph implies that 1 = ... = z,. Otherwise we

could interchange coordinates to get another eigenvector contradicting uniqueness in Claim
2. Therefore vl = (1,3...3) and we know that (\o)(1) = B(n — 1) and (\)(3) = 1.
Therefore the largest eigenvalue is given by A\g = v/n — 1.

Theorem 6.2 (Alon-Boppana Theorem). Let € > 0. Then for sufficiently large values of
n = |G|, if G is d-regular, then \; > v2d — 1 —e.

Exercise 67. Weaker version of Alon-Boppana Theorem As an application of the Spectral
Theorem, prove the theorem above replacing v/2d — 1 by v/d in the inequality.
Hint: Use the Interlacing Theorem and the observations in the previous example.

Observe that if Az = Az and f is a polynomial, then f(A)z = f(A)x. In other words, if A
is an eigenvalue of A, then f(\) is an eigenvalue of the matrix f(A). By a limit argument,
we can also conclude that e* is an eigenvalue of the matrix e4.

Example 14. Consider the matrix of the cyclic permutation (n (n —1) ... 2 1) of the basis
elements:

010 . 0

00 1. 0
P=1. .

100 ... 0

and the polynomial f(t) = ag + a1t + ...+ a,_1t"'. Then

Qg ap az -+ Gp-1
ap-1 Qo Q1 -+ Qp-2
f(P)=|@n-2 Gn-1 Go -+ On-3
aq a9 as --- Qo
is the circulant matrix. If A\{,..., A\, are the eigenvalues of P, then, from the observation
above f(A1),..., f(\,) are the eigenvalues for f(P). In particular, we can compute the

determinant of the circulant matrix since det f(P) = [] f(\;). Moreover, we can find an
eigenbasis for P to get an eigenbasis for the circulant matrix f(P).

Exercise 68. Find an eigenbasis and the eigenvalues of the matrix P in C.
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