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1. Lecture 1

Definition 1.1. If G(V,E) is some graph then G = (V,E) is the graph with the same vertex
set V , but for which we have {i, j} ∈ E ′ iff {i, j} /∈ E.

Example 1. Kn is the graph on n vertices with no edges. Kr,s is the graph on r+ s vertices
with two components which are Kr and Ks.

Definition 1.2. If G is a graph, and v, w are two vertices of G then we write v ∼ w (or
v ∼G w) to indicate that they are joined by an edge.
With this notation a graph isomorphism between G = (V,E) and H = (W,F ) as a map f

from V to W so that v ∼G w iff f(v) ∼H f(w).

Consider the problem of isomorphism: to show two graphs are isomorphic it suffices to
find an isomorphism; whereas if two graphs on n vertices aren’t isomorphic, a näıve proof of
this fact must show that none of the n! bijections on vertices are isomorphisms. Therefore
it is desirable to find other methods to exhibit the fact that two graphs are non-isomorphic.

Definition 1.3. A graph G is k-colorable if we can assign colors from a choice of k to the
vertices of G in such a way that no two adjacent vertices are the same color.

Consider the two graphs on six vertices pictured:
They are not isomorphic, which we can see by noting that the left graph cannot be 2-

colored (it has a triangle), whereas the right-hand one can be; implicit in this is the fact
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Figure 1. Two nonisomorphic graphs

that 2-colorability is an isomorphism invariant. This means that any two graphs which are
isomorphic are either both 2-colorable, or neither is.

Example 2. A particularly famous graph is the Petersen graph. This graph is often used
as a counterexample to conjectures in graph theory.

Figure 2. The Peterson graph

Exercise 1. Are there any graphs which are self-complementary (i.e. G isomorphic to G)?

Exercise 2. If G is a graph on n vertices and is self-complementary then show that n ≡ 0
or n ≡ 1 modulo 4. n ∼= m modulo k means that k divides n−m.

Definition 1.4. If G is a graph then we define the diameter of G = (V,E) to be diam(G) =
maxv,w∈V distG(v, w) where distG(v, w) is the minimum length of a path joining v, w in G.

Exercise 3. If G is disconnected then diam(G) ≤ 2.
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Exercise 4. Find the minimal k so that min(diam(G), diam(G)) ≤ k for all graphs G.
Notice first that k > 2 by finding a counterexample.

Lemma 1.1. If G is a d-regular graph on n vertices and diam(G) ≤ 2, then n ≤ d2 + 1

Proof. Consider the case of one vertex; it has d neighbors, each of which have a further d−1
neighbors. In the case that all of these vertices are distinct, we have 1+ d+ d(d− 1 =)d2 +1
by summing these values. �

Figure 3. A vertex in a d-regular graph

Now we ask the obvious question: can we manage to have equality in this equation? If so,
when?
In the case d = 1, n = 2 the bound is attained by a single edge joining 2 vertices. For
d = 2, n = 5, the pentagon attains the bound. For d = 3, n = 10 Petersen’s graph is the only
example. A characteristic of all of these graphs is that they all exhibit a surprising amount
of symmetry. For instance:

Exercise 5. Show that Petersen’s graph has 120 automorphisms (an automorphism of a
graph G is an isomorphism of G with itself).

There are no more examples which attain the bound until the case d = 7, n = 50; this
graph is known as the Hoffman-Singleton graph. There is at most one more d for which a
graph satisfies our hypotheses. We’ll devote the rest of the day to proving this.
Recall that if A,B ∈Mn(K) then tr(AB) = tr(BA).

Exercise 6. There are matrices A,B,C for which we have tr(ABC) 6= tr(ACB).

Definition 1.5. Two matrices A,B ∈ Mn(K) are similar if there’s an invertible matrix
C ∈Mn(K) so that B = C−1AC. Denote this by A ∼ B.
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Definition 1.6. A matrix A ∈Mn(K) is diagonalizable if it is similar to a diagonal matrix;
i.e. one for which the off-diagonal entries are all 0.

Lemma 1.2. If A,B are similar then tr(A) = tr(B) and det(A) = det(B).

Proof.

tr(C−1AC) = tr(ACC−1)

= tr(AI)

= tr(A)

and the same proof holds for the determinant as well as trace. �

Recall that if A is n by n symmetric with eigenvalues λ1 ≥ · · · ≥ λn then∑
i

λi = tr(A) and
∏
i

λi = detA

and we can choose an orthonormal eigebasis u1 · · ·un so that Aui = λiui for each i.

Lemma 1.3. If A is a symmetric real matrix then it is diagonalizable.

Proof. We can write

U =
[
u1 u2 · · · un

]
with eigenvectors as columns. Then we have

AU = A
[
Au1 Au2 · · · Aun

]
= U


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


so that A = UDU−1, for D the diagonal matrix given by the eigenvalues. �

Lemma 1.4. If a, b, c, d, x ∈ Z and ax4+bx3+cx2+dx−15 = 0 then x ∈ {±1,±3,±5,±15}.

Proof.

15 = x(ax3 + bx2 + cx+ d)

so the right side consists of factors of 15. �

Lemma 1.5. If G is d-regular with d2 + 1 vertices and diameter at most 2, then each pair
of vertices which are not adjacent have a unique common neighbor, and any two which are
adjacent have no common neighbor.

Proof. Consider the counting method which led us to the bound d2 + 1; this bound can
only be attained if all of the vertices are counted exactly once. The above “forbidden
occurrence” would mean that some vertices were counted twice as we built our tree of
adjacent vertices. �

Theorem 1.1. (Hoffman-Singleton) If G is d-regular with d2 + 1 vertices and diam(G) ≤ 2
then d ∈ {1, 2, 3, 5, 7, 57}.
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Proof. Let A = (aij) be the adjacency matrix of G. Then write A2 = B = (bij). The (i, j)
entry of B is the number of common neighbors of vertices i, j, since we have

bij =
n∑
k=1

aikakj

Thus we have bii = d for each i, and for i 6= j we have bij = 1. Let J be the n by n matrix
whose entries are all 1. We have

A2 + A = (d− 1)I + J

. Now the spectral theorem tells us that the maximal eigenvalue of our graph is λ1 = d, and
that the eigenvector corresponding to it is

u1 =


1
1
...
1


Now construct the rest of an orthogonal eigenbasis u2, · · · , un so that Aui = λiui. Then
apply ui on the right of the equation to get

A2ui + Aui = (d− 1)ui + Jui

and note that for i 6= 1 Jui = 0 because ui is orthogonal to each row of J . Therefore we get

λ2
iui + λiui = (d− 1)ui

and hence

λ2
i + λi = (d− 1).

Therefore each eigenvalue other than the first is one of

λ+ =
−1 +

√
4d− 3

2
, λ− =

−1−
√

4d− 3

2

and assigning multiplicity m1 to the first possibility and m2 to the second, we get

1 +m1 +m2 = d2 + 1

by counting the eigenvalues, and

trA = d+m1λ+ +m2λ− = 0.

These equations in m1,m2 are independent if λ+ 6= λ−. But this cannot happen, because
4d− 3 6= 0. We can write s =

√
4d− 3 for convenience. Then we have

−d
2

2
+
m1 −m2

2
s = −d

so that either s is rational (and hence integer) or m1 = m2.

In the case that m1 = m2 we get d2

2
= −d and therefore d = 2. This corresponds to the

pentagon.
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Finally, suppose that s is an integer. We get

d2 − (m1 −m2)s = 2d

and then, since s2 + 3 = 4d,(
s2 + 3

42

)2

− (m1 −m2)s− 2

(
s2 + 3

4

)
= 0

which expands to
s4 − 2s2 − 16(m1 −m2)s− 15 = 0

and using our earlier result we see that s ∈ {±1,±3,±5,±15} which correspond to d ∈
{1, 3, 5, 7, 57} �

Finally, some exercises:

Exercise 7. Show that if V1, V2 are vector subspaces of W then V1 + V2 = {v1 + v2 | v1 ∈
V1, v2 ∈ V2} is also a subspace of W .

Exercise 8. Prove the modular equation: dimV1 +dimV2 = dimV1∩dimV2 +dim(V1 +V2)
with V1, V2 as above.

Definition 1.7. A linear map between vector spaces V,W over K is a map f from V to W
for which we have f(v +w) = f(v) + f(w), and f(av) = af(v) for a ∈ K. If V = W we call
f a linear transformation.

Exercise 9. Find a linear transformations f, g on a vector space V for which we have fg = I
but gf 6= I for I the identity transformation.

The last exercise may be aided by considering the fact that for matrices A,B ∈ Mn(R)
AB − BA = I cannot hold; this rules out easy finite-dimensional examples. As a further
hint consider R[X], the vector space of polynomials with real coefficients.

2. Lecture 2

Exercise 10. Prove the triangle inequality (d(x, z) ≤ d(x, y)+d(y, z)) for the distance func-
tion defined on Rn by d(x, y) = ||x− y||, where the norm || · || is defined by ||(x1, . . . , xn)|| =
(
∑
xi)

1
2 .

Definition 2.1. Given an n × n matrix, we define the Rayleigh quotient R (a function
defined on Rn) by

R(x) =
xTAx

xTx
.

Note that R attains its maximum over Rn on the unit ball, since R(cx) = R(x).
Let A be an n× n real symmetric matrix. Then there are n eigenvalues (counting multi-

plicity). Let us order the eigenvalues of A from largest to smallest, λ0 ≥ λ1 ≥ · · · ≥ λn−1.
We proved the Spectral Theorem by first proving:

Theorem 2.1.
λ0 = max

||x||=1
R(x) = max

x 6=0
R(x).

We proved in class that:
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Theorem 2.2.
λ1 = max

x⊥u0

R(x),

where u0 is the eigenvector corresponding to λ0.

More generally,

Theorem 2.3.
λi = max

x⊥u0,...,ui−1

R(x),

where ui is the eigenvector corresponding to λi.

By applying this to the matrix −A, we also obtain:

Theorem 2.4.
λn−1 = min

x 6=0
R(x).

The following theorem is important for providing a characterization of the eigenvalues
that does not make reference to the eigenvectors:

Theorem 2.5. Courant-Fischer min-max theorem. With the above notation,

λi = max
W≤Rn,

dim(W )=i+1

min
x∈W,
x 6=0

R(x)

 .

(The notation ‘≤’ means ‘subspace’.)

Exercise 11. Let A be the adjacency matrix for a graph with n vertices, whose eigenvalues
are λ0 ≥ λ1 ≥ · · · ≥ λn−1. Remove a vertex and all of its edges, and let µ0 ≥ · · · ≥ µn−2.
Then

λ0 ≥ µ0 ≥ λ1 ≥ µ1 ≥ · · · ≥ µn−2 ≥ λn−1.

Exercise 12. Let λ0 be the largest eigenvalue for the adjacency matrix of a graph G, degavg

the average degree of G, and degmax the maximum degree of G. Then

degavg ≤ λ0 ≤ degmax .

Claim 1. If A and B are n× n matrices and AB = I, then BA = I.

Example 3. The above claim does not hold for linear transformations in infinite dimensions:
For example, in R[x], take the integration operator L defined by Lf(x) =

∫ 0

x
f(t)dt, and the

differentiation operator D. Then DL = I but LD 6= I.

Theorem 2.6. For an n× n matrix, the following are equivalent:

• A has a right inverse
• rank(A) = n
• A has a left inverse
• A has a (two-sided) inverse
• det(A) 6= 0.

If any (or all) are satisfied, A is ‘non-singular.’ Otherwise, A is ‘singular.’

Exercise 13. (Dimension of the solution space of a system of homogeneous linear
equations.) Let U = {x | Ax = 0} = ker(A). Then show that dim(U) = n− rank(A).
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More about eigenvalues: λ is an eigenvalue of A iff there is x 6= 0 so Ax = λx iff there is
x so (λI − A)x = 0 iff λI − A is singular iff det(λI − A) = 0.

Example 4. Let

A =

[
1 2
2 5

]
.

Then det(A− λI) = λ2 − 6λ+ 1, which has roots 3±
√

8.

Definition 2.2. Given a (square) matrix A, the the characteristic polynomial fA is defined
by

fA(t) = det(tI − A).

Theorem 2.7. Given a matrix A, λ is an eigenvalue of A iff fA(λ) = 0. (Note that in C,
there always exist solutions to this.)

Exercise 14. Let

Rα =

[
cos(α) − sin(α)
sin(α) cos(α)

]
.

Find the characteristic polynomial, eigenvalues, and an eigenbasis.

Theorem 2.8. (Cayley-Hamilton Theorem.) For any (square) matrix A, fA(A) = 0.

Exercise 15. Prove this theorem for symmetric real matrices.

Definition 2.3. Over C, fA will always factor as
∏

(t− λi)
ki , where the λi are distinct.

Then ki is the algebraic multiplicity of λi.

Definition 2.4. Given λ, let Vλ = {x | Ax = λx}. Then the geometric multiplicity of λ is
dim(Vλ) = n− rank(λI − A).

Exercise 16. The algebraic multiplicity is always greater than or equal to the geometric
multiplicity. Find a 2× 2 matrix where this inequality is strict.

Exercise 17. For an n× n matrix A over C, the following are equivalent:

• The algebraic and geometric multiplicities of the eigenvalues of A are all equal.
• The matrix is A diagonalizable.

3. Lecture 3

We begin with three exercises.

Exercise 18. Let A =


d1 1 . . . 1
1 d2 . . . 1
...

...
. . .

...
1 1 . . . dn

 . Show that if each di > 1, then A is nonsingular.

Exercise 19. Suppose that B is an n × n matrix with B = BT , bii = 1 and bij < 1 for all
i 6= j. Then B is not necessarily nonsingular.

Exercise 20. Prove that there exists an n× n matrix C with cii > 0 for all i, cij < 0 for all
i 6= j and rank(C) ≤ 3
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Theorem 3.1. For any basis e1, . . . en ∈ V and n (not necessarily distinct) vectors w1, . . . wn ∈
W , there is a unique linear map ϕ : V → W with ϕ(vi) = wi for all i.

Proof. Suppose that we have such a ϕ. If v ∈ V , then we can write v uniquely as v =
∑
aiei.

By linearity, ϕ(v) = ϕ(
∑
aiei) =

∑
aiϕ(ei) =

∑
aiwi. Thus, ϕ must be unique.

Now, define ϕ by the equation ϕ(
∑
aiei) =

∑
aiwi. We must verify that ϕ is linear and

that ϕ(ei) = wi. We leave this as an exercise. �

Given a linear map, ϕ, let ker(ϕ) = {v ∈ V | ϕ(v) = 0} ⊂ V , and let im(ϕ) = {ϕ(v) | v ∈
V } ⊂ W . These are both subspaces.

Theorem 3.2 (Rank-Nullity Theorem). dim(kerϕ) + dim(imϕ) = dimV

Proof. Let e1, . . . ek be a basis of kerϕ, and extend this to a basis of V , e1 . . . ek, ek+1 . . . en.
We have that ϕ(ei) = 0 if i ≤ k. We wish to show that {ϕ(ei) | i > k} is a basis for imϕ.
We must show that this set both spans and is linearly independent. We leave this as an
exercise. �

We also define rankϕ = dim(imϕ).
If A is a k× n matrix with coefficients in a field F , then A defines a linear map ϕA : x 7→

Ax ∈ F k. Then kerϕA = {x ∈ F n | Ax = 0} = MA, the solution space of a system of
homogeneous linear equations. imϕA = {Ax | x ∈ F n} is the column space of A, the span
of a1, . . . an. The rank-nullity theorem then tells us that dimMA + rank(A) = n.

Suppose that e1, . . . en is a basis for V and f1, . . . fk is a basis for W . Then we can encode
the information of ϕ as a matrix relative to these bases as follows. phi(ei) is a vector in W ,
and we can thus express it in coordinates relative to our basis for W . These coordinates
form the ith column.

[ϕ]e,f = [[ϕ(e1)]f , . . . , [ϕ(en)]f ]]

Exercise 21. If ϕ : V → W , (e1, . . . en) is a basis of V , (f1, . . . , fk) a basis for W . Prove
that, for v ∈ V , [ϕ(v)]f = [ϕ]ef [v]e.

Example 5. Let V = R2[x] := {ax2 + bx + c | a, b, c ∈ R} and define ϕ by ϕ(f) = f ′ Let
us express ϕ as a matrix relative to e = f = (1, x, x2). Since ϕ(1) = 0 · 1 + 0 · x + 0 · x2,
ϕ(x) = 1 · 1 + 0 · x+ 0 · x2 and ϕ(x2) = 0 · 1 + 2 · x+ 0 · x2, the matrix is0 1 0

0 0 2
0 0 0


We could have chosen a different basis to work with respect to, such as (x2, (x+1)2, (x+2)3),

and the resulting matrix would have looked very different. The resulting computation of the
matrix would have been drastically harder. However, there are still numerical invariants of
the linear map, such as determinant and trace, which remain independent of basis. To see
why, we must see how our matrix changes if we change our basis.

Suppose that we have two bases for V , (e1, . . . en) the old basis and (e′1, . . . , e
′
n) the new

basis. Let σ : V → V be the linear map sending ei to e′i. Note that σ is invertible because
it sends a basis to a basis. Then, from σ(

∑
aiei) =

∑
aie

′
i, we see that [σ(v)]new = [v]old.

If we let S and S−1 be the corresponding matrices, then we have S−1[v]old = [v]new and
S[v]new = [v]old. If we have an old and new basis for W , we can do a similar thing there,
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denoting the transition matrix by T . Then, if ϕ : V → W is a linear map, we can relate the
matrix form in the old basis to the matrix form in the new basis as follows.

Theorem 3.3. [ϕ]new = T−1[ϕ]oldS

Proof. We can prove this by applying both sides to a vector. We leave the details as an
exercise. �

Corollary 3.3.1. If ϕ : V → V is a linear map, then under a change of basis, [ϕ]new and
[ϕ]old are similar matrices, and given two similar matrices, they represent the same linear
transformation under different bases.

Example 6. Let ρα be the linear transformation which rotates the plane by an angle α. If
e1 and e2 are the standard basis vectors, then

[ρα] =

(
cosα − sinα
sinα cosα

)
With respect to the basis (e1, ρα(e1)), then since ρα(e1) is the angle bisector of e1 and
ρα(ρα(e1)), basic geometry and trigonometry allows us to show that the corresponding matrix
is

[ρα] =

(
0 −1
1 2 cosα

)
Exercise 22. Given linear maps V

ϕ→ W
ψ→ Z and corresponding bases e, f, g, then [ψϕ]eg =

[ψ]fg[ϕ]ef

Now, using that ρα+β = ραρβ, we can recover the addition identities for sin and cos.

Exercise 23. Find the eigenvalues and eigenvectors of ρα.

Given a matrix A, let fA(t) = det(tI − A) be the characteristic polynomial of A.

Theorem 3.4. If A ∼ B, then fA(t) = fB(t).

Proof. We have some matrix S such that B = S−1AS, so tI −B = tI − S−1AS = S−1(tI −
A)S, hence det(tI −B) = det(S−1(tI − A)S) = det(tI − A) �

Note that, from fA(0) = det(−A) = (−1)n det(A), we see that (−1)n det(A) is the constant
term of fA(t), and from using rook configurations to calculate the determentent, we see that
the coefficient of tn is 1 and the coefficient of tn−1 is − tr(A). Additionally, we see that if λi
are the eigenvalues of A. counted with multiplicity, then

∑
λi = tr(A) and

∏
λi = det(A).

Exercise 24. If e1, . . . en are eigenvectors of an operator A, and Aei = λiei, with λi 6= λj
when i 6= j, show that the ei are linearly independent.

Exercise 25. Find a 2× 2 matrix which is not diagonalizable.

Exercise 26. For what p is x2 + 1 irreducible over the field Z/pZ, p prime.
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4. Lecture 4

Exercise 27. Prove that x2+1 is irreducible over Fp = Z/(p) if and only if p ∼= −1 (mod 4).

Exercise 28. Suppose that A is an n× n matrix (over R or C). Then,

det(eA) = etrA.

Proposition 4.1. Suppose that ϕ : V → V is a linear transformation and v1, . . . , vk are
eigenvectors (ϕ(vi) = λivi) with distinct eigenvalues (λi 6= λj for i 6= j). Then, show that
v1, . . . , vk are linearly independent.

Proof. Suppose that
k∑
i=1

αivi = 0;

we’ll show that α1 = · · · = αk = 0. Applying ϕ to both sides of the above equation gives

0 = ϕ(0) = ϕ

(
k∑
i=1

αivi

)
=

k∑
i=1

αiϕ(vi) =
k∑
i=1

αiλivi.

Applying ϕ again gives

0 =
k∑
i=1

αiλ
2
i vi.

By induction, we can deduce that

0 =
k∑
i=1

αiλ
j
ivi

for all j. Since the determinant of the Vandermonde matrix

det


1 1 1 · · · 1
λ1 λ2 λ3 · · · λk
λ2

1 λ2
2 λ2

3 · · · λ2
k

...
...

...
. . .

...
λk−1

1 λk−1
2 λk−1

3 · · · λk−1
k

 =
∏
i>j

(λi − λj) 6= 0

is non-zero (recall λi 6= λj for all i 6= j); this implies that every αi = 0. (One could also do
this proof by induction.) �

Definition 4.1. A Euclidean space (over R) is a vector space V (over R) equipped with a
positive-definite inner product

V × V −→ R
(x, y) 7−→ 〈x, y〉.

Recall that the assignment (x, y) 7→ 〈x, y〉 should be bilinear and symmetric. Positive definite
means 〈x, x〉 ≥ 0 with equality if and only if x = 0.

Example 7. Let V = R[x], and given f, g ∈ R[x], define

〈f, g〉 =

∫ 1

0

f(t)g(t)dt.
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With this definition, you should verify that all the conditions for a positive-definite inner
product hold.

In fact, the same definition works if we take f, g ∈ C[0, 1], i.e., if we consider all continuous
functions on [0, 1].

Also, you should check that R[x] with inner product given by

〈f, g〉 =

∫ ∞

−∞
f(t)g(t)e−t

2

dt

is a Euclidean space.

Exercise 29. Show that if we equip C[0, 2π] with inner product given by

〈f, g〉 =

∫ 2π

0

fg.

Show that 1, cosx, sin x, cos 2x, sin 2x, . . . are orthogonal.

Proposition 4.2. Show that if u1, . . . , uk are non-zero pairwise orthogonal vectors, then the
are linearly independent.

Proof. Suppose that
k∑
i=1

αiui = 0.

Then,

0 =

〈
uj,

k∑
i=1

αiui

〉
=

k∑
i=1

αi〈uj, ui〉 = αj〈uj, uj〉,

so αj = 0. �

Definition 4.2. If V is a Euclidean space, we define the norm of x ∈ V to be

||x|| =
√
〈x, x〉.

We define the distance between two vectors x and y to be

||x− y|| .

Exercise 30. Show that with the definition above, the distance satisfies the triangle in-
equality.

Exercise 31. Show that in any Euclidean space, the Cauchy-Schwarz inequality holds:

|〈x, y〉| ≤ ||x|| ||y||

with equality if and only if x is a scalar multiple of y.
This gives an enormous number of integral inequalities. For example,∣∣∣∣∫ ∞

−∞
f(t)g(t)e−t

2

dt

∣∣∣∣ ≤
√∫ ∞

−∞
f(t)2e−t2dt

∫ ∞

−∞
g(t)2e−t2dt

12



Gram-Schmidt Orthogonalization. The input is a sequence of vectors in a Euclidean
space, say v1, v2, . . ., and the output is another sequence of vectors b1, b2, . . . such that

(1) for all k, the span of v1, . . . , vk is equal to the span of b1, . . . , bk
(2) for all i 6= j, 〈bi, bj〉 = 0
(3) vk − bk is in the span of v1, . . . , vk−1.

In fact, (3) implies (1), and (2) and (3) uniquely determine the output. By (3), we know
that b1 = v1. Now, by (3) again, we know that v2 − b2 is in span of v1. In fact, b2 must be
on the line v2−αv1, which is the line parallel to v1 that passes through v2. Using (2) allows
us to determine α uniquely. Uniqueness of the other vectors follows similarly.

Explicitly,

b1 = v1

b2 = v2 −
〈b1, v2〉
||b1||2

b1

b3 = v3 −
〈b1, v3〉
||b1||2

b1 −
〈b2, v3〉
||b2||2

b2

...

(The only caveat is if one of the ||bj||2 = 0, but in this case, bj = 0, so it doesn’t matter
which coefficient we take.) Note that the order of the input matters.

Exercise 32. Orthogonalize 1, x, x2, x3 with respect to the inner product

〈f, g〉 =

∫ 1

0

fg.

Exercise 33. When will bk = 0? bk = 0 if and only if vk is in the span of v1, . . . , vk−1.

If our input is a basis, our output an orthogonal basis, since the output has the same span
and same number of elements as the input basis. To turn this basis into an orthonormal
basis, just normalize the vectors: divide each vector by its length. So, we’ve proved that
every (finite-dimensional) Euclidean space has an orthonormal basis. (This is not true in
infinite-dimensional spaces, but it is sort of true if we allow “infinite linear combinations”.)
In fact, let V be a finite-dimensional Euclidean space with ONB e1, . . . , en. Let x =

∑
αiei,

and let y =
∑
βiei. Then,

〈x, y〉 =
∑
i

∑
j

αiβj〈ei, ej〉 =
∑

αiβi = ~αt~β.

So, this shows that V is isomorphic as a Euclidean space or (isometric) to Rn with the
standard inner product.

Definition 4.3. An orthogonal transformation of a Euclidean space V is a linear map
ϕ : V → V such that

〈ϕx, ϕy〉 = 〈x, y〉
for all x and y.

Exercise 34. All the (complex) eigenvalues of an orthogonal transformation have unit ab-
solute value.
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Exercise 35. Show that
lim

x,y→0+
xy

is almost always 1.

Exercise 36. What is the probability that two random positive integers are relatively prime?
Does this question even make sense? In other words, first compute the probability that two
random positive integers chosen from {1, . . . , n} are relatively prime, and then let n→∞.

Exercise 37. Find a sequence that is convergent in the Abel sense, but divergent in the
Fejer sense.

Recall that to compute the Fejer sum of a series
∑
aj, one computes the limit of the

averages

σN =
S1 + · · ·+ SN

N
,

where Sj is the partial sum
Sj = a1 + · · ·+ aj.

To compute the Abel sum, one considers the power series

f(x) =
∑

anx
n,

and computes the limit
lim
x→1−

f(x).

Exercise 38. Find the determinant of the circulant matrix :
a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3
...

...
...

. . .
...

a1 a2 a3 · · · a0


The way to compute the determinant is to find the eigenvalues. In fact, all circulant

matrices commute, so they have a common eigenbasis.
So, find the eigenvalues of this matrix, prove that all circulant matrices commute, and

find the common eigenbasis.

Exercise 39. Find a 2× 2 matrix that is not diagonalizable over the complex numbers. In
other words, find A such that A is not similar to a diagonal matrix. (Recall that two matrices
are similar A ∼ B if and only if there exists an invertible matrix S such that B = S−1AS.)
Maybe

B =

(
1 1
0 1

)
work. What about (

1 1
0 2.

)
What’s the characteristic polynomial of the above matrix?

det

(
t− 1 −1

0 t− 2

)
= (t− 1)(t− 2).

14



So, the eigenvalues of a triangular matrix are the diagonal entries. The above matrix is
diagonalizable, because we can take an eigenvector of eigenvalue 1 and an eigenvector of
eigenvalue 2, and we know these are linearly independent, since they are eigenvectors with
distinct eigenvalues. So, we conclude(

1 1
0 2

)
∼
(

1 0
0 2

)
.

We know that if A is diagonalizable,

A ∼


λ1

λ2

λ3

. . .
λn

 ,

where the λi’s are the eigenvalues of A. So, we know that B cannot be diagonalizable, since
if it were, it would be similar to the identity matrix, but the identity matrix is similar only
to itself.

Exercise 40. Show that there cannot be more than countably many pairwise orthogonal
functions in C[0, 1] with respect to the inner product

〈f, g〉 =

∫ 1

0

fg.

5. Lecture 5

Exercise 41. Suppose that one has 13 coins of different weights such that, if you remove
any one coin, then the remaining coins can be arranged into two groups of six coins, with
each group of equal total weight. Show that each coin must have the same weight. (This
holds for weights in Z,R,Q,C,R[x]. What about Z/n?)

Exercise 42. Suppose that a rectangle is broken up into smaller rectangles such that each
subrectangle has at least one integer-length side. Show that the larger rectangle has at least
one integer-length side.

Exercise 43. (Generalized) Fisher Inequality. Suppose that A1, A2, . . . Am are subsets of
{1, . . . , n}. Fix a 6= 0. Suppose that, for all i 6= j, |Ai ∩ Aj| = a. Prove that m ≤ n.

Recall that a Euclidean space (over R) is a vector space V with a positive definite inner
product 〈−,−〉.

Definition 5.1. ϕ : V → V is an orthogonal transformation if 〈ϕ(x), ϕ(y)〉 = 〈x, y〉 for all
x, y ∈ V . Such transformations are also called isometries or congruences of V .

We can define the angle between two vectors in analogy to R2 by saying that 〈v, w〉 =
‖v‖ ‖w‖ cos θ.

Exercise 44. If ϕ : V → V is a linear transformation such that ‖ϕx‖ = ‖x‖ for all x ∈ V .
Then ϕ is an orthogonal transformation.

Lemma 5.1. Let O(V ) be the set of orthogonal transformations of V . Then
15



(1) If ϕ, ψ ∈ O(V ), then ϕψ ∈ O(V ),
(2) If ϕ ∈ O(V ), then there exists ϕ−1 ∈ O(V ).

Thus, O(V ) is a group.

Proof. First, we show that kerϕ = 0. Suppose that ϕ(x) = 0. Then ‖x‖ = ‖ϕ(x)‖ = ‖0‖ =
0 because orthogonal transformations preserve norm. Since our inner product is positive
definite, we must have x = 0. The other properties are straight forward. �

In what follows, V will not necessarily be Euclidean. Suppose that ϕ : V → V is a linear
transformation, and U ⊆ V is a subspace. Then we say U is an invariant subspace for ϕ if
ϕ(u) ∈ U for all u ∈ U .

Let e1, . . . ek be a basis of U , and extend it to a basis e1, . . . en of V . If we express ϕ in
terms of this basis, then it is of the form

[ϕ]e =

(
A B
0 C

)
where A is the matrix form of the restriction of ϕ to U . Conversely, if we can find a basis
such that [ϕ]e has a 2 × 2 block upper triangular decomposition with the top left block a
k × k square, our first k vectors span an invariant subspace.

Using this, we see that if [ϕ] is upper triangular (and not just block upper triangular),
then span(e1), span(e1, e2), . . . span(e1, . . . en) are all invariant subspaces.

Remark 1. Note that if v 6= 0, then span v is an invariant subspace if and only if v is an
eigenvector.

We can rephrase the upper-triangular property in terms of invariant subspaces by saying
that we have a maximal length chain of invariant subspaces {0} ⊂ U1 ⊂ . . . ⊂ Un = V . Such
a chain is called a flag.

Theorem 5.1. Over C, any matrix is similar to an upper triangular matrix.

Proof. To begin, we find an eigenvector. This gives us an invariant subspace of dimension 1.
We can then proceed by induction, the details of which is left to the reader. (Hint: Given
an invariant subspace U , then the set of equivalence classes v +U is a vector space which is
invariant under ϕ.) �

Exercise 45. If n is even and A is an n× n matrix, then one can reduce the rank of A no
more than n/2 by changing no more n2/4 entries.

Exercise 46. For almost all matrices, changing fewer than n2/4 entries cannot yield a rank
of less than or equal to n/2.

Remark 2. The following problem is open. Find an explicit family of matrices such that
more than n1.01 entries need to be changed to bring the rank down below n/2. This problem,
one of matrix rigidity, was posed by Valiant around 1980.

Question 1. Given ϕ : V → V and a basis e, how can we tell from [ϕ]e whether ϕ is
orthogonal?

We rephrase orthogonality from 〈x, y〉 = 〈ϕ(x), ϕ(y)〉 to [x]T [y] = [Ax]T [Ay] = [x]T [AT ]Ay.
This holds for every x, y if and only if [A]T [A] = I (why?)
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Definition 5.2. If A ∈Mn(R), then we say A is an orthogonal matrix if ATA = I.

Note that if the columns of A are ai and ATA = (bij), then bij = aTi aj = 〈ai, aj〉, so A is
orthonormal if and only if its columns form an orthonormal basis. As we showed previously,
this is equivalent to the rows forming an orthonormal basis because any left inverse of an
n× n matrix is a right inverse.

Theorem 5.2. ATA = I ⇔ AT = A−1 ⇔ AAT = I

Exercise 47. The rotation (
cosα − sinα
− sinα cosα

)
is orthogonal, and the orthogonal matrix(

cosα − sinα
sinα − cosα

)
is a reflection. What is this a reflection about?

Exercise 48. In R3, every orthogonal transformation has an eigenvector.

Exercise 49. In Rn, every linear transformation has an invariant subspace of dimension at
most 2.

Definition 5.3. If S ⊂ V is a set of vectors in a Euclidean space, define S⊥ = {v ∈ V |
〈v, s〉∀s ∈ S.

Exercise 50. S⊥ is a subspace.

Exercise 51. If U ⊂ V is a subspace, then dimU + dimU⊥ = dimV . Furthermore, every
vector v can be written uniquely as v = u+ u⊥ where u ∈ U and u⊥ ∈ U⊥

Exercise 52. If ϕ ∈ O(V ), and U is an invariant subspace, then U⊥ is an invariant subspace.

Exercise 53. If U is a subspace, then U⊥⊥ = U (if V is finite dimensional).

Exercise 54. In C[0, 2π], then {1, cosx, sin x, cos 2x, sin 2x, . . .}⊥ = {0} where 〈f, g〉 =∫ 2π

0
fg dx

Definition 5.4. We say ϕ : V → V is a symmetric transformation if 〈ϕx, y〉 = 〈xϕy〉 for all
x, y ∈ V .

Exercise 55. ϕ is symmetric if and only if [ϕ]ONB = [ϕ]TONB

Exercise 56. If ϕ is symmetric and U is an invariant subspace, then UT is invariant.

Theorem 5.3. If ϕ is a symmetric transformation, then ϕ has an eigenvector.

Proof. Consider the Rayleigh quotient R(x) = 〈x,ϕx〉
‖x‖2 . Then if R(x) has a max at x0, then x0

is an eigenvector. �

Exercise 57. Find a linear transformation and an invariant subspace U such that U⊥ is not
invariant. This can be done over R when the dimension is 2.
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Theorem 5.4 (Spectral Theorem). If A ∈ Mn(R), AT = A, then there exists S ∈ O(V )
such that

S−1AS =

λ1 · · · 0
...

. . .
...

0 · · · λn


In the next theorem and definition, assume that V is a Euclidean space.

Theorem 5.5. For all ϕ : V → V , there exists ψ : V → V such that, for all x, y ∈ V ,
〈x, ϕy〉 = 〈ψx, y〉.

Proof. We leave this as an exercise. Note that if e is an orthonormal basis, then [ψ]e =
[ϕ]Te . �

Definition 5.5. In the theorem, ψ is call the transpose or adjoint of ϕ, and we write ψ = ϕT

Corollary 5.5.1. ϕ is symmetric ⇔ ϕ = ϕT , and ϕ is orthogonal ⇔ ϕ−1 = ϕT

Exercise 58. If A ∈ O(n) (orthogonal matrices) and λ ∈ C is an eigenvalue of A, then
|λ| = 1.

Hermitian (Complex Euclidean) Spaces. Let V be a vector space over C, and 〈−,−〉 :
V × V → C such that

• 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
• 〈x, λy〉 = λ〈x, y〉
• 〈x, y〉 = 〈y, x〉
• 〈x, x〉 ≥ 0 with equality if and only if x = 0

Then we say that V is a Hermitian space.

Example 8. On C[0, 1], 〈f, g〉 =
∫ 1

0
f(t)g(t) dt. On Cn, 〈x, y〉 = xTy.

Let A∗ = A
T

Exercise 59. If A = A∗, then all eigenvalues of A are real and there exists an orthonormal
basis of eigenvectors.

Exercise 60. Redo everything we’ve done above with the spectral theorem, Euclidean vector
spaces and orthogonal transformations using Hermitian vector spaces and unitary matrices,
those such that B−1 = B∗.

6. Lecture 6

Problem 1. Let G be a graph with n vertices and A = (aij) be its adjacency matrix with
eigenvalues λ0 ≥ . . . λn−1. Denote average degree by daverage = d1+...+dn

n
, where di is the

degree at the vertex i. Show that λ0 ≥ daverage.

Quadratic Forms. Consider a matrix A = (aij) and column vectors x and y, then

BA(x, y) := xTAy =
n∑
i=1

n∑
j=1

xiaijyj

18



is called bilinear form. Indeed BA is linear in both x and y. In particular, when y = x, we
get

QA(x) := BA(x, x) =
n∑

i,j=1

aijxixj

which is called a quadratic form. Observe that QA(x) doesn’t change if we replace the matrix
A by (A + AT )/2, therefore without loss of generality, we can assume that AT = A (A is
symmetric). Hence there is a 1-to-1 correspondence between real quadratic forms and real
symmetric matrices.

Example 9. Consider the set of points satisfying an equation of the form Q(x, y) = c, where
Q(x, y) = ax2 = bxy = cy2 is a quadratic form, (x, y) ∈ R2 and c is a real constant. There
are a number of different geometric objects of this form.

• x2

a2 + y2

b2
= 1 gives us an ellipse with semimajor horizontal axis of length a and semimi-

nor vertical axis of length b.

• x2

a2 − y2

b2
= 1 gives us an hyperbola centered on the origin.

• xy = 1 give us again an hyperbola centered on the origin, but with asymptotes the
Cartesian axes.

• x2

a2 − y2

b2
= 0 gives two lines intersecting at (0, 0)

These are some examples of what we call conic sections on R2.

Example 10. Rotated ellipse.
The points (x, y) ∈ R2 satisfying x2 + 3xy + 10y2 = 1 correspond to a rotated ellipse C.

In terms of quadratic forms we have QA(x, y) = 1 with matrix:

A =

(
1 3/2

3/2 10

)
The characteristic polynomial of this matrix is fA(t) = t2 − 11t + 31/4 and the eigenvalues

are λ1,2 =
11±3

√
(10)

2
. The eigenvectors v1 and v2 corresponding to these eigenvalues give the

directions of the axes of the rotated ellipse C. The semimajor axis has length a = 1/
√
λ1

and the semiminor axis b = 1/
√
λ2. To prove this last observation we go back to the general

setting.

Change of basis and quadratic forms. Let us observe what happen when we change from
an old basis e to a new basis e′. The linear transformation σ : V → V that sends ei to e′i
gives us the matrix of change of coordinates S := [σ]e = [[e′1]e · · · [e′n]e]. Then the relation
[x]e′ = S−1[x]e gives the the new coordinates of x in terms of the old coordinates. We will
write this as xnew = S−1xold or xold = Sxnew.

Then

Q(x) = xToldAxold = (Sxnew)TA(Sxnew) = xTnew(STAS)xnew,

and A′ = STAS is the matrix of the quadratic form in terms of the new basis.
19



Observe that regarding A as the matrix of a linear transformation, under a change of basis
we get A′′ = S−1AS. Then A′ = A′′ just when ST = S−1, i.e. when S is an orthogonal
matrix that sends an orthonormal basis to an orthonormal basis.

We want to switch to the orthonormal eigenbasis. Let e′ denote such basis, then Ae′i = λie
′
i,

and the matrix of change of basis S is orthogonal. Moreover,

AS = A
(
e′1 . . . e′n

)
=
(
Ae′1 . . . Ae′n

)
=
(
e′1 . . . e′n

)
D = SD,

where the matrix D is given by

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn

 .

Therefore,if xTnew = (x′1, . . . , x
′
n) then, with respect to the eigenbasis, we have

Q(x) = xTnewDxnew =
n∑
i=1

λix
′
i
2
.

Back to Example 10, we get that under the change to the eigenbasis:

Q(x) = λ1x
′
1
2
+ λ2x

′
2
2

=
x′1

2

a2
+
x′2

2

b2
,

with a = 1/
√
λ1 and b = 1/

√
λ2 and the corresponding eigenvectors give the direction for

those axes as we claimed before.

Exercise 61. Consider an equation of the form F (x) = Q(x)+L(x)+C = 0, where Q(x) is
a quadratic from, L(x) = a1x1 + . . .+anxn a linear form, and C a constant matrix. Suppose
that the matrix A associated to Q is non-singular. Show that the curve {F (x) = 0} is a
translate of {Q(x) = const.}. In particular, this means that the nature of the curve can be
predicted from the quadratic form alone.

Observe that a symmetric matrix A is non-degenerate if and only if detA 6= 0 if and only
if none of the eigenvalues of A are zero.

Quadratic forms and graphs. Let us consider to the setting in Problem 1.Let Q the quadratic
form associated to the adjacency matrix A = (aij) of the graph G with n vertices and m
edges. Observe that the sum of the degrees of the vertices is given by

n∑
i=1

di =
n∑
i=1

n∑
j=1

aij = Q(1),

where 1 = (1, . . . , 1).
Moreover, after we prove the handshake theorem, we will see that

∑n
i=1 di = Q(1) = 2m.

Theorem 6.1 (Handshake Theorem).

n(daverage) = 2m.

20



Recall that for the symmetric matrix A the largest eigenvalue λ0 = maxx 6=0R(x), where

R(x) =
xTAx

xTx
=
QA(x)

||x||2
,

is the Rayleigh quotient. In particular, that implies that

λ0 ≥
QA(1)

||1||2
=

∑
di
n

= daverage,

which concludes the proof of Problem 1.

Exercise 62. Show that λ0 = daverage if and only if G is a regular graph (and therefore λ0

is an integer).

Definition 6.1. Given a matrix A, we define

eA :=
∞∑
k=0

Ak

k!
.

Exercise 63. Prove that the series
∑∞

k=0
Ak

k!
converges for any matrix A. What are the

eigenvalues of the matrix eA?

Consider first the linear differential equation

ẋ = ax,

where x = x(t), ẋ = dx
dt

and a is a constant. Recall that the solution of such differential
equation is x(t) = ceat, where c is any real constant. Now translate this to a more general
situation: a matrix equation.

ẋ(t) = Ax(t),

where x(t)T = (x1(t), . . . , xn(t)) and A is an n× n matrix.

Exercise 64. Verify that the solution for this matrix differential equation is x(t) = eAtC,
where C is a constant matrix.

This general situation actually arises:

Example 11. Consider the linear differential equation of degree 2:

..
y = −y.

Observe that if we write xT = (y, ẏ), we get

ẋ =

(
ẏ
..
y

)
=

(
ẏ
−y

)
=

(
ẏ
−y

)
=

(
0 1
−1 0

)(
y
ẏ

)
=

(
ẏ
−y

)
=

(
0 1
−1 0

)
ẋ.

which is a matrix equation.

Exercise 65. By solving this matrix equation for x, show that you can get that expected
solution for y: y = c1 cos(t) + c2 sin(t), with c1 and c2 constants.
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Example 12. The graph Kn has adjacency matrix
0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

 = J − I,

where I is the n× n identity matrix and

J =

1 . . . 1
...

. . .
...

1 . . . 1

 .

Let us first get the eigenvalues of the matrix J . First observe that1 . . . 1
...

. . .
...

1 . . . 1

1
...
1

 = n

1
...
1

 .

Therefore n is an eigenvalue with correspondant eigenvector (1, . . . , 1)T . Any other eigen-
vector xT = (x1, . . . , xn) of J is orthogonal to (1, . . . , 1)T , then it satisfies

∑n
i=1 xi = 0

and 1 . . . 1
...

. . .
...

1 . . . 1

x1
...
xn

 = 0

x1
...
xn

 .

Therefore, the eigenvalue for the eigenvector x is 0. Hence, J has eigenvalues λ0 = n and
λ1 = . . . = λn = 0, where the eigenvectors with 0 eigenvalue generate the (n−1)-dimensional
space {

∑n
i=1 xi = 0}. It follows that J − I, the adjacency matrix of Kn, has eigenvalues

λ0 = n− 1, λ1 = . . . = λn = −1. Observe that tr(J − I) = (n− 1) + (−1) + . . .+ (−1) = 0
as expected.

Claim 2. If G is connected then the largest eigenvalue is unique and it has an eigenvector
with all entries positive.

Proof. Consider A the adjacency matrix of G.
The largest eigenvalue is given by λ0 = max R(x), where R(x) = xTAx

xTx
. Suppose that

R(u) = λ0. Then Au = λ0u, and we may assume without loss of generality that ||u||2 = 1
and that the first non-zero coordinate of u is positive. If uT = (x1, . . . , xn) has some negative
coordinate, we can take vT = (|x1| , . . . , |xn|) and observe that R(v) > λ0 which contradicts
the maximality of λ0. Therefore, u has all coordinates non-negative.

Now suppose that λ1 = λ0. Then the corresponding eigenvectors must have all coordinates
non-negative and be orthogonal to each other, which forces them to have disjoint support
and for instance at least one zero coordinate. The proof is concluded by citing the next
exercise. �

Exercise 66. If the eigenvector u associated to λ0 has a zero coordinate, then the graph G
is disconnected.
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Example 13. Let G be the star graph with n vertices (the vertex v0 is connected to each
vertex vi by an edge for i = 1, . . . , n − 1. Let us find its largest eigenvalue. Since G is
connected, we know that λ0 is unique and if uT = (x1, . . . , xn) is such that Au = λ0u, then
xi > 0. Moreover, the symmetry of the graph implies that x1 = . . . = xn. Otherwise we
could interchange coordinates to get another eigenvector contradicting uniqueness in Claim
2. Therefore uT = (1, β . . . β) and we know that (λ0)(1) = β(n − 1) and (λ0)(β) = 1.
Therefore the largest eigenvalue is given by λ0 =

√
n− 1.

Theorem 6.2 (Alon-Boppana Theorem). Let ε > 0. Then for sufficiently large values of
n = |G|, if G is d-regular, then λ1 >

√
2d− 1− ε.

Exercise 67. Weaker version of Alon-Boppana Theorem As an application of the Spectral
Theorem, prove the theorem above replacing

√
2d− 1 by

√
d in the inequality.

Hint: Use the Interlacing Theorem and the observations in the previous example.

Observe that if Ax = λx and f is a polynomial, then f(A)x = f(λ)x. In other words, if λ
is an eigenvalue of A, then f(λ) is an eigenvalue of the matrix f(A). By a limit argument,
we can also conclude that eλ is an eigenvalue of the matrix eA.

Example 14. Consider the matrix of the cyclic permutation (n (n− 1) . . . 2 1) of the basis
elements:

P =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

1 0 0 . . . 0


and the polynomial f(t) = a0 + a1t+ . . .+ an−1t

n−1. Then

f(P ) =


a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3
...

...
...

. . .
...

a1 a2 a3 · · · a0


is the circulant matrix. If λ1, . . . , λn are the eigenvalues of P , then, from the observation
above f(λ1), . . . , f(λn) are the eigenvalues for f(P ). In particular, we can compute the
determinant of the circulant matrix since det f(P ) =

∏
f(λi). Moreover, we can find an

eigenbasis for P to get an eigenbasis for the circulant matrix f(P ).

Exercise 68. Find an eigenbasis and the eigenvalues of the matrix P in C.
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