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13.1 Regressive Functions
Recall:

Definition 13.1.1. A function ¢ : w; — w; is regressive if for all a > 1,
g(a) < a.

Theorem 13.1.2 (Fodor’s Theorem, baby version). If g : w; — wy is regres-
sive, then there is 3 € wy such that |g7'(3)] = N;.

Proof. Since w, is well-ordered, if we choose some point and keep applying
g we will always reach 0 after a finite number of steps. Let Ay be the set
of a such that g"~1(a) > 0,¢%(a) = 0. We can show by induction that if
the theorem is false, each Ay is countable. But their union is w;. This is a
contradiction. O]

Question 13.1.3. Is there a “large” subset S C w; such that there is a
regressive g : S — wq, so that the preimage of each point is countable?

If S is the set of successor ordinals, we can simply “subtract 1.” This
means that Fodor’s theorem holds even if we restrict the domain of g to limit
ordinals! In fact, we can make S even bigger; for example, limit ordinals with
an “immediate limit ordinal predecessor”; i.e. those of the form w(f + 1), or
even w"(8 + 1) (which we can map to w"g3).

Question 13.1.4. Let P = {w® : @ < w;}. Can we define a regressive
function on the complement of P without any point with X; preimages?



Yes! Let g(a) = sup{y < a,7 € P}. We could easily make this even
sparser, replacing w with, say «.

Definition 13.1.5. S C w; is stationary if for every closed, cofinal set
C g Wi, sSNncC 7é @

Exercise 13.1.6. Show that every stationary set is cofinal.

Note 13.1.7. If S is not stationary, then there is g : S — w; regressive such
that for all 8 € wy, |¢g7'(8)] < Ny because there is a closed, cofinal set C
disjoint from S and we can define g as above (with C' in the role of P).

Exercise 13.1.8. If S is stationary, then for every regressive g : S — w;
there is 3 € w; such that [g71(3)] = N;.

Theorem 13.1.9 (Fodor’s theorem). If S C wy is stationary and g : S — w;
is regressive then there is 3 € wy such that g=*(3) is stationary.

13.2 Measurable Cardinals

o-additive or “countably additive” means “less-than-R;-additive.” We shall
drop the “less than” and call it N;-additive.

Definition 13.2.1. Let s be an infinite cardinal. A (0,1) measure p on a
set A is k-additive if the union of fewer than x-many 0-sets is still a O-set.
If 1 is Np-additive we say it’s finitely-additive, and if it’s N;-additive we
say it’s o-additive.

Note that this means that if p is k-additive and |B| < & then u(B) = 0.

Exercise 13.2.2. Suppose there exists an N;-additive measure. Let m be
the smallest cardinal for which such a p exists. Show that p is m-additive.

Definition 13.2.3. m is a measurable cardinal if there is an m-additive
measure on m.

Exercise 13.2.4. If m is measurable, then m is strongly inaccessible. That
is:

(a) cf(m) = m (cofinalty), i.e., m cannot be written as the sum of fewer
smaller cardinals; and



(b) if n < m then 2" < m.

Proof. c¢f(m) = m: suppose m is measurable by p, and cf(m) < m. So
M = SUp,c; N Where |I| < m. Now p(n,) = 0 for each «, but there are fewer
than m of them and their union is all of m, a contradiction. O

Theorem 13.2.5. If m is a measurable cardinal, and S s the set of all
cardinals n < m that are strongly inaccessible, then |S| = m; in fact, S is
stationary in m.

Exercise 13.2.6. Prove : if m is measurable then m — (m, m).

Exercise 13.2.7. Prove: if m — (m, m), then m is strongly inaccessible.
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