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13.1 Regressive Functions

Recall:

Definition 13.1.1. A function g : ω1 → ω1 is regressive if for all α ≥ 1,
g(α) < α.

Theorem 13.1.2 (Fodor’s Theorem, baby version). If g : ω1 → ω1 is regres-
sive, then there is β ∈ ω1 such that |g−1(β)| = ℵ1.

Proof. Since ω1 is well-ordered, if we choose some point and keep applying
g we will always reach 0 after a finite number of steps. Let Ak be the set
of α such that gk−1(α) > 0, gk(α) = 0. We can show by induction that if
the theorem is false, each Ak is countable. But their union is ω1. This is a
contradiction.

Question 13.1.3. Is there a “large” subset S ⊂ ω1 such that there is a
regressive g : S → ω1, so that the preimage of each point is countable?

If S is the set of successor ordinals, we can simply “subtract 1.” This
means that Fodor’s theorem holds even if we restrict the domain of g to limit
ordinals! In fact, we can make S even bigger; for example, limit ordinals with
an “immediate limit ordinal predecessor”; i.e. those of the form ω(β + 1), or
even ωn(β + 1) (which we can map to ωnβ).

Question 13.1.4. Let P = {ωα : α < ω1}. Can we define a regressive
function on the complement of P without any point with ℵ1 preimages?
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Yes! Let g(α) = sup{γ < α, γ ∈ P}. We could easily make this even
sparser, replacing ω with, say ε0.

Definition 13.1.5. S ⊆ ω1 is stationary if for every closed, cofinal set
C ⊆ ω1, S ∩ C 6= ∅.

Exercise 13.1.6. Show that every stationary set is cofinal.

Note 13.1.7. If S is not stationary, then there is g : S → ω1 regressive such
that for all β ∈ ω1, |g−1(β)| ≤ ℵ0 because there is a closed, cofinal set C
disjoint from S and we can define g as above (with C in the role of P ).

Exercise 13.1.8. If S is stationary, then for every regressive g : S → ω1

there is β ∈ ω1 such that |g−1(β)| = ℵ1.

Theorem 13.1.9 (Fodor’s theorem). If S ⊂ ω1 is stationary and g : S → ω1

is regressive then there is β ∈ ω1 such that g−1(β) is stationary.

13.2 Measurable Cardinals

σ-additive or “countably additive” means “less-than-ℵ1-additive.” We shall
drop the “less than” and call it ℵ1-additive.

Definition 13.2.1. Let κ be an infinite cardinal. A (0, 1) measure µ on a
set A is κ-additive if the union of fewer than κ-many 0-sets is still a 0-set.
If µ is ℵ0-additive we say it’s finitely-additive, and if it’s ℵ1-additive we
say it’s σ-additive.

Note that this means that if µ is κ-additive and |B| < κ then µ(B) = 0.

Exercise 13.2.2. Suppose there exists an ℵ1-additive measure. Let m be
the smallest cardinal for which such a µ exists. Show that µ is m-additive.

Definition 13.2.3. m is a measurable cardinal if there is an m-additive
measure on m.

Exercise 13.2.4. If m is measurable, then m is strongly inaccessible. That
is:

(a) cf(m) = m (cofinalty), i. e., m cannot be written as the sum of fewer
smaller cardinals; and
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(b) if n < m then 2n < m.

Proof. cf(m) = m: suppose m is measurable by µ, and cf(m) < m. So
m = supα∈I nα where |I| < m. Now µ(nα) = 0 for each α, but there are fewer
than m of them and their union is all of m, a contradiction.

Theorem 13.2.5. If m is a measurable cardinal, and S is the set of all
cardinals n < m that are strongly inaccessible, then |S| = m; in fact, S is
stationary in m.

Exercise 13.2.6. Prove : if m is measurable then m → (m, m).

Exercise 13.2.7. Prove: if m → (m, m), then m is strongly inaccessible.
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