REU'09 · Transfinite Combinatorics · Lecture 13

Instructor: László Babai Scribe: Matthew Wright

August 10, 2009

13.1 Regressive Functions

Recall:

Definition 13.1.1. A function $g: \omega_1 \to \omega_1$ is **regressive** if for all $\alpha \geq 1$, $g(\alpha) < \alpha$.

Theorem 13.1.2 (Fodor's Theorem, baby version). If $g: \omega_1 \to \omega_1$ is regressive, then there is $\beta \in \omega_1$ such that $|g^{-1}(\beta)| = \aleph_1$.

Proof. Since ω_1 is well-ordered, if we choose some point and keep applying g we will always reach 0 after a finite number of steps. Let A_k be the set of α such that $g^{k-1}(\alpha) > 0$, $g^k(\alpha) = 0$. We can show by induction that if the theorem is false, each A_k is countable. But their union is ω_1 . This is a contradiction.

Question 13.1.3. Is there a "large" subset $S \subset \omega_1$ such that there is a regressive $g: S \to \omega_1$, so that the preimage of each point is countable?

If S is the set of successor ordinals, we can simply "subtract 1." This means that Fodor's theorem holds even if we restrict the domain of g to limit ordinals! In fact, we can make S even bigger; for example, limit ordinals with an "immediate limit ordinal predecessor"; i.e. those of the form $\omega(\beta+1)$, or even $\omega^n(\beta+1)$ (which we can map to $\omega^n\beta$).

Question 13.1.4. Let $P = \{\omega^{\alpha} : \alpha < \omega_1\}$. Can we define a regressive function on the complement of P without any point with \aleph_1 preimages?

Yes! Let $g(\alpha) = \sup\{\gamma < \alpha, \gamma \in P\}$. We could easily make this even sparser, replacing ω with, say ϵ_0 .

Definition 13.1.5. $S \subseteq \omega_1$ is **stationary** if for every closed, cofinal set $C \subseteq \omega_1$, $S \cap C \neq \emptyset$.

Exercise 13.1.6. Show that every stationary set is cofinal.

Note 13.1.7. If S is not stationary, then there is $g: S \to \omega_1$ regressive such that for all $\beta \in \omega_1$, $|g^{-1}(\beta)| \leq \aleph_0$ because there is a closed, cofinal set C disjoint from S and we can define g as above (with C in the role of P).

Exercise 13.1.8. If S is stationary, then for every regressive $g: S \to \omega_1$ there is $\beta \in \omega_1$ such that $|g^{-1}(\beta)| = \aleph_1$.

Theorem 13.1.9 (Fodor's theorem). If $S \subset \omega_1$ is stationary and $g: S \to \omega_1$ is regressive then there is $\beta \in \omega_1$ such that $g^{-1}(\beta)$ is stationary.

13.2 Measurable Cardinals

 σ -additive or "countably additive" means "less-than- \aleph_1 -additive." We shall drop the "less than" and call it \aleph_1 -additive.

Definition 13.2.1. Let κ be an infinite cardinal. A (0,1) measure μ on a set A is κ -additive if the union of fewer than κ -many 0-sets is still a 0-set. If μ is \aleph_0 -additive we say it's **finitely-additive**, and if it's \aleph_1 -additive we say it's σ -additive.

Note that this means that if μ is κ -additive and $|B| < \kappa$ then $\mu(B) = 0$.

Exercise 13.2.2. Suppose there exists an \aleph_1 -additive measure. Let \mathfrak{m} be the smallest cardinal for which such a μ exists. Show that μ is \mathfrak{m} -additive.

Definition 13.2.3. \mathfrak{m} is a measurable cardinal if there is an \mathfrak{m} -additive measure on \mathfrak{m} .

Exercise 13.2.4. If \mathfrak{m} is measurable, then \mathfrak{m} is strongly inaccessible. That is:

(a) cf(m) = m (cofinalty), i.e., \mathfrak{m} cannot be written as the sum of fewer smaller cardinals; and

(b) if $\mathfrak{n} < \mathfrak{m}$ then $2^{\mathfrak{n}} < \mathfrak{m}$.

Proof. $cf(\mathfrak{m}) = \mathfrak{m}$: suppose \mathfrak{m} is measurable by μ , and $cf(\mathfrak{m}) < \mathfrak{m}$. So $\mathfrak{m} = \sup_{\alpha \in I} \mathfrak{n}_{\alpha}$ where $|I| < \mathfrak{m}$. Now $\mu(\mathfrak{n}_{\alpha}) = 0$ for each α , but there are fewer than \mathfrak{m} of them and their union is all of \mathfrak{m} , a contradiction.

Theorem 13.2.5. If \mathfrak{m} is a measurable cardinal, and S is the set of all cardinals $\mathfrak{n} < \mathfrak{m}$ that are strongly inaccessible, then $|S| = \mathfrak{m}$; in fact, S is stationary in \mathfrak{m} .

Exercise 13.2.6. Prove : if \mathfrak{m} is measurable then $\mathfrak{m} \to (\mathfrak{m}, \mathfrak{m})$.

Exercise 13.2.7. Prove: if $\mathfrak{m} \to (\mathfrak{m}, \mathfrak{m})$, then \mathfrak{m} is strongly inaccessible.