13.1 Regressive Functions

Recall:

Definition 13.1.1. A function $g : \omega_1 \to \omega_1$ is **regressive** if for all $\alpha \geq 1$, $g(\alpha) < \alpha$.

Theorem 13.1.2 (Fodor’s Theorem, baby version). If $g : \omega_1 \to \omega_1$ is regressive, then there is $\beta \in \omega_1$ such that $|g^{-1}(\beta)| = \aleph_1$.

Proof. Since ω_1 is well-ordered, if we choose some point and keep applying g we will always reach 0 after a finite number of steps. Let A_k be the set of α such that $g^{k-1}(\alpha) > 0, g^k(\alpha) = 0$. We can show by induction that if the theorem is false, each A_k is countable. But their union is ω_1. This is a contradiction. \qed

Question 13.1.3. Is there a “large” subset $S \subset \omega_1$ such that there is a regressive $g : S \to \omega_1$, so that the preimage of each point is countable?

If S is the set of successor ordinals, we can simply “subtract 1.” This means that Fodor’s theorem holds even if we restrict the domain of g to limit ordinals! In fact, we can make S even bigger; for example, limit ordinals with an “immediate limit ordinal predecessor”; i.e. those of the form $\omega(\beta + 1)$, or even $\omega^n(\beta + 1)$ (which we can map to $\omega^n\beta$).

Question 13.1.4. Let $P = \{\omega^\alpha : \alpha < \omega_1\}$. Can we define a regressive function on the complement of P without any point with \aleph_1 preimages?
Yes! Let $g(\alpha) = \sup\{\gamma < \alpha, \gamma \in P\}$. We could easily make this even sparser, replacing ω with, say ϵ_0.

Definition 13.1.5. $S \subseteq \omega_1$ is **stationary** if for every closed, cofinal set $C \subseteq \omega_1$, $S \cap C \neq \emptyset$.

Exercise 13.1.6. Show that every stationary set is cofinal.

Note 13.1.7. If S is not stationary, then there is $g : S \to \omega_1$ regressive such that for all $\beta \in \omega_1$, $|g^{-1}(\beta)| \leq \aleph_0$ because there is a closed, cofinal set C disjoint from S and we can define g as above (with C in the role of P).

Exercise 13.1.8. If S is stationary, then for every regressive $g : S \to \omega_1$ there is $\beta \in \omega_1$ such that $|g^{-1}(\beta)| = \aleph_1$.

Theorem 13.1.9 (Fodor’s theorem). If $S \subseteq \omega_1$ is stationary and $g : S \to \omega_1$ is regressive then there is $\beta \in \omega_1$ such that $g^{-1}(\beta)$ is stationary.

13.2 Measurable Cardinals

σ-additive or “countably additive” means “less-than-\aleph_1-additive.” We shall drop the “less than” and call it \aleph_1-additive.

Definition 13.2.1. Let κ be an infinite cardinal. A $(0, 1)$ measure μ on a set A is **κ-additive** if the union of fewer than κ-many 0-sets is still a 0-set. If μ is \aleph_0-additive we say it’s **finitely-additive**, and if it’s \aleph_1-additive we say it’s **σ-additive**.

Note that this means that if μ is κ-additive and $|B| < \kappa$ then $\mu(B) = 0$.

Exercise 13.2.2. Suppose there exists an \aleph_1-additive measure. Let m be the smallest cardinal for which such a μ exists. Show that μ is m-additive.

Definition 13.2.3. m is a **measurable** cardinal if there is an m-additive measure on m.

Exercise 13.2.4. If m is measurable, then m is strongly inaccessible. That is:

(a) $\text{cf}(m) = m$ (cofinality), i.e., m cannot be written as the sum of fewer smaller cardinals; and
(b) if $n < m$ then $2^n < m$.

Proof. $cf(m) = m$: suppose m is measurable by μ, and $cf(m) < m$. So $m = \sup_{\alpha \in I} n_\alpha$ where $|I| < m$. Now $\mu(n_\alpha) = 0$ for each α, but there are fewer than m of them and their union is all of m, a contradiction. \qed

Theorem 13.2.5. If m is a measurable cardinal, and S is the set of all cardinals $n < m$ that are strongly inaccessible, then $|S| = m$; in fact, S is stationary in m.

Exercise 13.2.6. Prove: if m is measurable then $m \rightarrow (m, m)$.

Exercise 13.2.7. Prove: if $m \rightarrow (m, m)$, then m is strongly inaccessible.