REU'09 · Transfinite Combinatorics · Lecture 2

Instructor: László Babai Scribe: Evan Jenkins

July 15, 2009

2.1 First-order logic

In first-order logic, one encounters the following types of objects:

Variables: Examples: $x_1, x_2, x_3, \ldots, y_1, \ldots$

Operation Symbols: Examples:

Binary: +, ·

Unary: $x \mapsto x^{-1}$

Nullary: 0, 1 (nullary operations are called "constants")

Relation Symbols: Example of a binary relation symbol: <

Terms: Objects built up from variables using operation symbols, a.k.a. "polynomials." Example: $(x_1 + x_2)x_3 + x_1x_4$

Predicates: Relations between terms. Example: If t_1 and t_2 are terms, an **atomic formula** is a statement of the form $t_1 = t_2$ or $t_1 < t_2$, where < is a relation symbol. If R is a ternary relation symbol then $R(t_1, t_2, t_3)$ is an atomic formula.

Operation symbols can have any arity ≥ 0 and relation symbols can have any arity ≥ 1 .

We can build up more general formulas from atomic formulas using **logical connectives** and **quanitifiers**. The four logical connectives are \land (AND), \lor (OR), \neg (NOT), and \rightarrow (IMPLIES). Thus, if ϕ_1 and ϕ_2 are formulas, then we can form the formulas $\phi_1 \land \phi_2$, $\phi_1 \land \phi_2$, $\neg \phi_1$, and $\phi_1 \rightarrow \phi_2$.

There are two quantifiers, the **universal quantifier** \forall and the **existential quantifier** \exists . If ϕ is a formula, x a variable, we can form formulas $(\forall x)(\phi)$ and $(\exists x)(\phi)$.

A *formula* is a string of symbols built up from atomic formulas by repeated application of the above rules. (This is an inductive definition.)

For every formula ϕ , we have a set $F(\phi)$ of "free variables" of the formula. We define this notion inductively. If ϕ is an atomic formula, then

$$F(\phi) = \{\text{all variables occurring in } \phi\}.$$

We extend this to all formulas inductively by the following rules:

$$F(\phi_1 * \phi_2) = F(\phi_1) \cup F(\phi_2), \text{ where } * \in \{ \lor, \land, \to \}$$

$$F(\neg \phi) = F(\phi),$$

$$F((\forall x)(\phi)) = F(\phi) \setminus \{x\},$$

$$F((\exists x)(\phi)) = F(\phi) \setminus \{x\}.$$

Definition 2.1.1. A **sentence** is a formula without free variables.

Definition 2.1.2. A **language** is a list of of operation and relation symbols (each of a given arity). An **interpretation** of a language is a set A equipped with a map $A^k \to A$ for every k-ary operation in the language, and a subset of A^k (or equivalently a map $A^k \to \{0,1\}$) for every k-ary relation.

Given an interpretation of the language and an assignment of values from A to each variable, each formula receives a truth value (definable by induction on the length of the formula). (Quantifiers range over A.)

Discussion 2.1.3. Consider the formula

$$(x = y) \lor (\forall x)(\exists y)(x = y^2).$$

"Is this statement true or false in the complex numbers?" It is neither true nor false. To get a definite truth values, we have to plug in for the free variables. If x = 5, y = 5, then it is true. If x = 5, y = 6, then it is also true. But over the reals, it false if we do not plug in the same value for x and y, even in the case x = 25, y = 5.

Exercise 2.1.4. Define free occurrences of variables.

Note 2.1.5. Under all interpretations and substitutions,

"
$$\phi_1 \to \phi_2$$
" is true \iff " $\neg \phi_1 \lor \phi_2$ " is true.

2.2 Models of first-order sentences

The language of a **poset** consists of no operations, and a single binary relation, <. It has axioms like

$$(\forall x, y, z)((x < y) \land (y < z) \rightarrow (x < z)).$$

The language of graphs consists of no operations, and a single binary relation, which we call **adjaceny**, $x \sim y$. We have the following axioms.

Symmetry:

$$(\forall x, y)(x \sim y \to y \sim x) \tag{2.2.1}$$

Irreflexivity:

$$(\forall x)(\neg x \sim x) \tag{2.2.2}$$

Question 2.2.1. What graph properties can be expressed by first-order sentences?

Connectivity *cannot* be expressed by a first-order sentence. "Every vertex has degree 3" *can* be expressed by a first-order sentence:

$$(\forall x)(\exists y_1, y_2, y_3)(x \sim y_1 \land x \sim y_2 \land x \sim y_3 \land y_1 \neq y_2 \land y_1 \neq y_3 \land y_2 \neq y_3 \land (\forall z)((z \neq y_1 \land z \neq y_2 \land z \neq y_3) \rightarrow z \nsim x)).$$
(2.2.3)

Definition 2.2.2. A **model** of a first-order sentence is a structure on which the first-order sentence is true.

Example 2.2.3. Three-regular graphs are a model for the first-order sentence that is the \wedge of the sentences (2.2.1), (2.2.2), and (2.2.3).

Definition 2.2.4. A field is a structure with binary operations + and \cdot and nullary operations 0 and 1 that satisfies the following axioms.

- (a) $0 \neq 1$
- (b) $(\forall x, y, z)((x+y) + z = x + (y+z))$
- (c) $(\forall x, y)(x + y = y + x)$
- (d) $(\forall x)(x+0=x)$

- (e) $(\forall x)(\exists y)(x+y=0)$
- (f) $(\forall x, y, z)((x \cdot y) \cdot z = x \cdot (y \cdot z))$
- (g) $(\forall x, y)(x \cdot y = y \cdot x)$
- (h) $(\forall x)(x \cdot 1 = x)$
- (i) $(\forall x)(\exists y)(x \neq 0 \rightarrow x \cdot y = 1)$
- (j) $(\forall x, y, z)(x \cdot (y+z) = (x \cdot y) + (x \cdot z))$

Definition 2.2.5. The **charactristic** of a field is p if $\underbrace{1+\cdots+1}_{p}=0$, and p

is the smallest positive such number. (It is known that if such p exists, it is a prime.) If there is no such p, we say the field has characteristic 0 (or ∞); if p does exist, we say the field has "finite characteristic."

The property of characteristic 0 can be axiomatized by an infinite list of axioms, but the property of finite characteristic cannot. Characteristic 0 is axiomatized by

$$1+1 \neq 0,$$

$$1+1+1 \neq 0,$$

$$1+1+1+1+1 \neq 0,$$

$$\vdots$$

Exercise 2.2.6. Let \mathcal{M} be a class of structures of the same language. If both \mathcal{M} and its complement $\overline{\mathcal{M}}$ are axiomatizable, then they are *finitely* axiomatizable.

Exercise 2.2.7. Are connected or disconnected graphs axiomatizable among finite graphs?

Exercise 2.2.8. We generate a random graph on a given set of n vertices by flipping a coin for each pair of vertices to decide adjacency. If ϕ is a sentence in teh language of graphs then for every n, let $p_n(\phi) = \Pr(\text{random graph on } n \text{ vertices satisfies } \phi)$. Prove **Fagin's theorem**: For every sentence ϕ , $\lim_{n\to\infty} p_n(\phi) = 0$ or 1.

Exercise 2.2.9. A finite field has order q, a power of a prime. Construct a first-order sentence in the language of fields such that the *finite* models of the sentence are exactly the fields of order $q \equiv 1 \pmod{4}$. (We don't care what the infinite models will be.)

Definition 2.2.10. Let \mathcal{S} be a set of sentences. Assume that \mathcal{S} has an infinite model. We say that \mathcal{S} is **categorical** in cardinality \mathfrak{m} if \mathcal{S} has exactly one model (up to isomorphism) of cardinality \mathfrak{m} .

Note 2.2.11. Some sets of sentences have finite but not infinite models. For example, the sentence $(\exists x)(\forall y)(y=x)$ has only the one-element set as a model.

Exercise 2.2.12. If S has infinitely many finite models, then S has an infinite model.

Definition 2.2.13. A the axioms of a **dense ordering** are the same as those for a linear ordering, along with

$$(\forall x, y)(x < y \to (\exists z)(x < z < y)),$$
$$(\forall x)(\exists y)(y < x),$$
$$(\forall x)(\exists y)(y > x).$$

Example 2.2.14. The rational numbers and the real numbers are densely ordered.

Exercise 2.2.15. (1) All countable dense linear orders are order-isomorphic to $(\mathbb{Q}, <)$. In other words, the axioms of dense linear order are categorical in the countable cardinality. (2) It is not categorical in any uncountable cardinality.

Exercise 2.2.16. Find S such that for every uncountable cardinality \mathfrak{m} , there exists a unique model of cardinality \mathfrak{m} , but for $\mathfrak{m} = \aleph_0$ there are infinitely many nonisomorphic models. In other words, S is categorical in all uncountable cardinalities but not in \aleph_0 . (Hint: a class of fundamental structures in abstract algebra.)