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2.1 First-order logic

In first-order logic, one encounters the following types of objects:

Variables: Examples: x1, x2, x3, . . . , y1, . . .

Operation Symbols: Examples:

Binary: +, ·
Unary: x 7→ x−1

Nullary: 0, 1 (nullary operations are called “constants”)

Relation Symbols: Example of a binary relation symbol: <

Terms: Objects built up from variables using operation symbols, a.k.a. “poly-
nomials.” Example: (x1 + x2)x3 + x1x4

Predicates: Relations between terms. Example: If t1 and t2 are terms, an atomic
formula is a statement of the form t1 = t2 or t1 < t2, where < is a
relation symbol. If R is a ternary relation symbol then R(t1, t2, t3) is
an atomic formula.

Operation symbols can have any arity ≥ 0 and relation symbols can have
any arity ≥ 1.

We can build up more general formulas from atomic formulas using log-
ical connectives and quanitifiers. The four logical connectives are ∧
(AND), ∨ (OR), ¬ (NOT), and → (IMPLIES). Thus, if φ1 and φ2 are for-
mulas, then we can form the formulas φ1 ∧ φ2, φ1 ∧ φ2, ¬φ1, and φ1 → φ2.
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There are two quantifiers, the universal quantifier ∀ and the existen-
tial quantifier ∃. If φ is a formula, x a variable, we can form formulas
(∀x)(φ) and (∃x)(φ).

A formula is a string of symbols built up from atomic formulas by repeated
application of the above rules. (This is an inductive definition.)

For every formula φ, we have a set F (φ) of “free variables” of the formula.
We define this notion inductively. If φ is an atomic formula, then

F (φ) = {all variables occurring in φ}.

We extend this to all formulas inductively by the following rules:

F (φ1 ∗ φ2) = F (φ1) ∪ F (φ2), where ∗ ∈ {∨,∧,→}
F (¬φ) = F (φ),

F ((∀x)(φ)) = F (φ) \ {x},
F ((∃x)(φ)) = F (φ) \ {x}.

Definition 2.1.1. A sentence is a formula without free variables.

Definition 2.1.2. A language is a list of of operation and relation symbols
(each of a given arity). An interpretation of a language is a set A equipped
with a map Ak → A for every k-ary operation in the language, and a subset
of Ak (or equivalently a map Ak → {0, 1}) for every k-ary relation.

Given an interpretation of the language and an assignment of values from
A to each variable, each formula receives a truth value (definable by induction
on the length of the formula). (Quantifiers range over A.)

Discussion 2.1.3. Consider the formula

(x = y) ∨ (∀x)(∃y)(x = y2).

“Is this statement true or false in the complex numbers?” It is neither true
nor false. To get a definite truth values, we have to plug in for the free
variables. If x = 5, y = 5, then it is true. If x = 5, y = 6, then it is also true.
But over the reals, it false if we do not plug in the same value for x and y,
even in the case x = 25, y = 5.

Exercise 2.1.4. Define free occurrences of variables.

Note 2.1.5. Under all interpretations and substitutions,

“φ1 → φ2” is true ⇐⇒ “¬φ1 ∨ φ2” is true.
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2.2 Models of first-order sentences

The language of a poset consists of no operations, and a single binary rela-
tion, <. It has axioms like

(∀x, y, z)((x < y) ∧ (y < z) → (x < z)).

The language of graphs consists of no operations, and a single binary
relation, which we call adjaceny, x ∼ y. We have the following axioms.

Symmetry:
(∀x, y)(x ∼ y → y ∼ x) (2.2.1)

Irreflexivity:
(∀x)(¬x ∼ x) (2.2.2)

Question 2.2.1. What graph properties can be expressed by first-order sen-
tences?

Connectivity cannot be expressed by a first-order sentence. “Every vertex
has degree 3” can be expressed by a first-order sentence:

(∀x)(∃y1, y2, y3)(x ∼ y1 ∧ x ∼ y2 ∧ x ∼ y3 ∧ y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3∧
(∀z)((z 6= y1 ∧ z 6= y2 ∧ z 6= y3) → z 6∼ x)).

(2.2.3)

Definition 2.2.2. A model of a first-order sentence is a structure on which
the first-order sentence is true.

Example 2.2.3. Three-regular graphs are a model for the first-order sen-
tence that is the ∧ of the sentences (2.2.1), (2.2.2), and (2.2.3).

Definition 2.2.4. A field is a structure with binary operations + and · and
nullary operations 0 and 1 that satisfies the following axioms.

(a) 0 6= 1

(b) (∀x, y, z)((x + y) + z = x + (y + z))

(c) (∀x, y)(x + y = y + x)

(d) (∀x)(x + 0 = x)
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(e) (∀x)(∃y)(x + y = 0)

(f) (∀x, y, z)((x · y) · z = x · (y · z))

(g) (∀x, y)(x · y = y · x)

(h) (∀x)(x · 1 = x)

(i) (∀x)(∃y)(x 6= 0 → x · y = 1)

(j) (∀x, y, z)(x · (y + z) = (x · y) + (x · z))

Definition 2.2.5. The charactristic of a field is p if 1 + · · ·+ 1︸ ︷︷ ︸
p

= 0, and p

is the smallest positive such number. (It is known that if such p exists, it is
a prime.) If there is no such p, we say the field has characteristic 0 (or ∞);
if p does exist, we say the field has “finite charateristic.”

The property of characteristic 0 can be axiomatized by an infinite list of
axioms, but the property of finite characteristic cannot. Characteristic 0 is
axiomatized by

1 + 1 6= 0,

1 + 1 + 1 6= 0,

1 + 1 + 1 + 1 + 1 6= 0,

...

Exercise 2.2.6. Let M be a class of structures of the same language. If
both M and its complement M are axiomatizable, then they are finitely
axiomatizable.

Exercise 2.2.7. Are connected or disconnected graphs axiomatizable among
finite graphs?

Exercise 2.2.8. We generate a random graph on a given set of n vertices by
flipping a coin for each pair of vertices to decide adjacency. If φ is a sentence
in teh language of graphs then for every n, let pn(φ) = Pr(random graph
on n vertices satisfies φ). Prove Fagin’s theorem: For every sentence φ,
limn→∞ pn(φ) = 0 or 1.
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Exercise 2.2.9. A finite field has order q, a power of a prime. Construct
a first-order sentence in the language of fields such that the finite models of
the sentence are exactly the fields of order q ≡ 1 (mod 4). (We don’t care
what the infinite models will be.)

Definition 2.2.10. Let S be a set of sentences. Assume that S has an infinite
model. We say that S is categorical in cardinality m if S has exactly one
model (up to isomorphism) of cardinality m.

Note 2.2.11. Some sets of sentences have finite but not infinite models. For
example, the sentence (∃x)(∀y)(y = x) has only the one-element set as a
model.

Exercise 2.2.12. If S has infinitely many finite models, then S has an
infinite model.

Definition 2.2.13. A the axioms of a dense ordering are the same as
those for a linear ordering, along with

(∀x, y)(x < y → (∃z)(x < z < y)),

(∀x)(∃y)(y < x),

(∀x)(∃y)(y > x).

Example 2.2.14. The rational numbers and the real numbers are densely
ordered.

Exercise 2.2.15. (1) All countable dense linear orders are order-isomorphic
to (Q, <). In other words, the axioms of dense linear order are categorical
in the countable cardinality. (2) It is not categorical in any uncountable
cardinality.

Exercise 2.2.16. Find S such that for every uncountable cardinality m,
there exists a unique model of cardinality m, but for m = ℵ0 there are
infinitely many nonisomorphic models. In other words, S is categorical in
all uncountable cardinalities but not in ℵ0. (Hint: a class of fundamental
structures in abstract algebra.)
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