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3.1 Fields and abelian groups
Exercise 3.1.1. Find a sentence satisfied by all finite fields but not by R.

Exercise 3.1.2. Find a sentence satisfied by all finite fields but not by C.

Exercise 3.1.3. Find a sentence ¢ such that the finite fields that satisfy ¢
are precisely those of order =1 (mod m).

Question 3.1.4. Is there a sentence that can pick out finite fields of order
=2 (mod 7)? (The instructor does not know the answer.)

Definition 3.1.5. An abelian group (A, +) is torsion-free if it has no ele-
ment of finite order other than 0.

Definition 3.1.6. An abelian group (A, +) is divisible if Vo € A, Vn > 0,
Jy such that z = ny.

Example 3.1.7. The additive group of the rational numbers; (Q,+), are
torsion-free and divisible. The group (Q/Z,+) is divisible but not torsion-
free.

Exercise 3.1.8. If an abelian group is torsion-free and divisible, then it is
a vector space over Q. So it is determined up to isomorphism by a single
parameter, the dimension.

Both torsion-free abelian groups and divisible abelian groups are defined
by first-order theories. So torsion-free divisible abelian groups come from a
first-order theory.



Exercise 3.1.9. This theory is not categorical in the countable cardinality
but it is categorical in every uncountable cardinality.

The following exercise is needed for the solution.

Exercise 3.1.10. For every cardinal m > 1, if V' is an m-dimensional vector
space over Q, then |V| = max{Ry, m}.

3.2 The Random Graph

Exercise 3.2.1. Consider random graphs on countably many vertices. Then
Pr(random graphs X and Y are isomorphic) = 1.

We call the unique (up to isomorphism) countable random graph R. This
graph was first described by Erddés and Rényi in 1960.

Exercise 3.2.2. R is uniwversal: Every countable graph is an induced sub-
graph of R. (An induced subgraph is one in which all edges between
included vertices are included in the subgraph.)

Exercise 3.2.3. (a) Any isomorphism between finite subgraphs of R extends
to an automorphism of R. (b) |Aut R| = c.

Theorem 3.2.4 (Morley). If a first-order theory is categorical in some un-
countable cardinal, then it is categorical in all uncountable cardinals.

Definition 3.2.5. A field F' is algebraically closed if every non-constant
polynomial over F' has a root in F.

Exercise 3.2.6. The theory of algebraically closed fields of a given charac-
teristic is not categorical in countable cardinality, but it is categorical in all
uncountable cardinalities.

Exercise 3.2.7 (Erdds-de Bruijn). If all finite subgraphs of a graph G are
k-colorable (for some k < 00), then G is k-colorable.

Exercise 3.2.8. Use Exercise to prove that for infinitely many switches,
there does not need to be a dictator switch.



3.3 Godel’s compactness theorem

Notation:
e M: model (interpretation of operations and relations)
o M = ¢: ¢ is satsified by M

Definition 3.3.1. A set S of sentences is consistent if it has a model:

(Vo € S)(M |= ¢).

Theorem 3.3.2 (Godel’s compactness theorem). S is consistent if and only
iof every finite subset of S is consistent.

Theorem 3.3.3 (Tychonoft’s compactness theorem). The topological product
of compact spaces is compact.

Exercise 3.3.4. Infer Erdés-de Bruijn from
(a) Godel’s compactness theorem;
(b) Tychonoff’s compactness theorem;
(c) Zorn’s lemma.
Exercise 3.3.5. Prove Zorn’s lemma from the well-ordering theorem.

We are looking for finitely additive 0-1 measures over a set A. In other
words, we want u: P(A) — {0, 1} such that

(1) VB C A, u(B) € {0,1};
(2) VB1,By C A, By N By = @, then pu(By U By) = p(By) + pu(By);
(3) n(A) = 1.
Exercise 3.3.6. If y(B;1) = u(By) = 1, then u(B; N By) = 1.
Exercise 3.3.7. If By C By then p(By) < u(Bs).
Exercise 3.3.8. If A is finite, then u has a dictator.
We would thus like to add a fourth condition,

(4) Yz € A, u({z}) = 0. (There is no dictator.)



Definition 3.3.9. Let F C P(A). We say that F has the finite intersec-
tion property if the intersection of any finite number of sets in F is not
empty.

Theorem 3.3.10. If F C P(A) has the finite intersection property, then 3
such that (VF € F)(u(F) = 1).

Proof. Let @ be the set of all subsets of P(A) with the finite intersection
property. Let @’ be those subsets in ® that contain F. &’ is a partially
ordered set. Every chain in ®’ is bounded by the union of the members of
the chain, as any finitely many elements of the union will be contained in
one of the members of the chain, and will thus have nonempty intersection.
So by Zorn’s lemma, there exists a maximal element F,,., of ®'. Set

1 if B € Fuax,
w(B) = .
0 if B ¢ Fiax-

Exercise 3.3.11. Show that p is OK. (Hint: show that VB C A, either
B € Fax or B € Frax.)

]

Exercise 3.3.12. Solve the infinite lamp problem using a finitely additive
non-principal (no dictator) 0-1 measure.

Exercise 3.3.13. Prove Erdds-de Bruijn using 0-1 measures.

Exercise 3.3.14. Prove Godel’s compactness theorem using 0-1 measures.

3.4 Ultraproducts

Definition 3.4.1. Let A be a set, pu a non-principal, finitely additive 0-1
measure on a set A, and let be F; fields for i € A. Let f,g € [[;c4 Fi- We
say that f and g are almost equal, and write f ~ g, if u({t € A | f(i) #
g(7)}) = 0. The ultraproduct of the F; is defined to be G = [],. 4 Fi/ ~.

Exercise 3.4.2. The ultraproduct of fields is a field.
Exercise 3.4.3. Let A = w. If F; is finite, | F;| — oo, then |G| = ¢.

Exercise 3.4.4. If (Vi € A)(|F;] =1 (mod 4)), then 22 + 1 = 0 is solvable
in G.
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