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4.1 Cardinals

For finite sets A and B, the number of functions f : A → B is |B||A|, so for
general cardinals, we define

|A||B| = |{f : A → B}|.

Addition of cardinals is defined by

|A|+ |B| = |A tB|.

Multiplication of cardinals is defined by

|A| · |B| = |A×B|.

More generally, for a set {Ai | i ∈ I} of sets, we define∑
i∈I

|Ai| =
∣∣∣⊔ Ai

∣∣∣ ,∏
i∈I

|Ai| =
∣∣∣∏Ai

∣∣∣ .

Exercise 4.1.1. For cardinals a, b, c, show that

(a) ab+c = ab · ac;

(b) (ab)c = ab·c;
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(c) (a · b)c = ac · bc.

Exercise 4.1.2. For all cardinals m, m < 2m, i.e., m ≤ 2m and m 6= 2m.

Exercise 4.1.3 (Julius König). If {ai | i ∈ I} and {bi | i ∈ I} are sets of
cardinals such that ai < bi for all i ∈ I, then

∑
i∈I ai <

∏
i∈I bi.

Note 4.1.4.
∑

i∈I ai is not necessarily less than
∑

i∈I bi. Example: let I
be countable, ai = 1 and bi = 2 for all i. Then both sums are countable.
Similarly,

∏
i∈I ai is not necessarily less than

∏
i∈I bi. Example: let again I

be countable; let ai = 2 and bi = 4 for all i. Then both products are 2ℵ0

(because 4ℵ0 = 22ℵ0 = 2ℵ0).

The cardinality of [0, 1] is c by definition. We claim that c = 2ℵ0 . To
see this, note that we can take any element of [0, 1] and write its binary
expansion. However, this does not give a bijection between [0, 1] and the set
{0, 1}ℵ0 because, for instance, the expansions

.0100111111 . . . and

.0101000000 . . .

represent the same real number. However, the only numbers with two binary
expansions are the dyadic fractions, which are countable. Thus, c+ℵ0 = 2ℵ0 .
Now let d be the cardinality of [0, 1] minus the dyadic fractions; so c = d+ℵ0;
therefore 2ℵ0 = d + ℵ0 + ℵ0 = d + ℵ0 = c.

Exercise 4.1.5. c2 = c. (Hint. Use that c = 2ℵ0.)

Next we claim that |R| = c. Ideed, as [0, 1] ⊂ R, we have c ≤ |R|. On the
other hand, R is the union of countably many copies of [0, 1), so we get

|R| ≤ c · ℵ0 ≤ c · c = c.

Alternately, we can get a bijection between R and (0, 1) using the tangent
function.

The number of functions f : [0, 1] → R is thus cc = 2ℵ0·c = 2c.

Theorem 4.1.6. Let C[0, 1] be the set of continuous functions f : [0, 1] → R.
Then |C[0, 1]| = c.
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Proof. Clearly |C[0, 1]| ≥ c, as there are c many constant functions.
A continuous function is determined by its values on a dense set; in par-

ticular, f ∈ C[0, 1] will be determined by f |Q∩[0,1]. The number of functions
Q ∩ [0, 1] → R is cℵ0 = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = c, so |C[0, 1]| ≤ c.

Definition 4.1.7. If f, g ∈ C[0, 1], we define 〈f, g〉 =
∫ 1

0
f(t)g(t) dt. We say

f and g are orthogonal and write f ⊥ g if 〈f, g〉 = 0.

Exercise 4.1.8. If {fi | i ∈ I} are orthogonal, fi 6= 0, then |I| ≤ ℵ0.

Exercise 4.1.9. Prove that there exists a Euclidean space (a vector space
over R with a positive definite inner product) such that

(1) |V | = c;

(2) there exist c many orthogonal vectors in V .

4.2 Finitely additive 0-1 measures

The material on ultrafilters is covered in section 4.6 of the 2007 notes on
Transfinite Combinatorics.

We can rephrase Theorem 3.3.9 as follows.

Theorem 4.2.1. ∀F ⊆ P(A) with the finite intersection property, there
exists an ultrafilter U ⊇ F .

For A infinite, if we choose F to be the set of subsets of A that contain
all but one element, we obtain the following.

Corollary 4.2.2. For every infinite set A, there exists a nonprincipal 0-1
measure (or equivalently, a nonprincipal ultrafilter).

This gives a resolution to the infinite switch problem. Suppose the set I
of switches has a nonprincipal measure µ. We can write I = RtY tG, where
R, Y , and G are the set of switches set to red, yellow, and green, respectively.
Then µ(R) + µ(Y ) + µ(G) = 1, so exactly one of R, Y , and G has measure
1 (“almost all switches are in the same position”). The corresponding color
will be the lamp color.

To see that this works, suppose that the color is red, and then all of the
switches are changed. Let R′, Y ′, and G′ be the new sets of red, yellow, and
green switches. Then R′ ⊆ Y ∪G, so R′ has measure 0. Thus, the light will
change color to either yellow or green.
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4.3 Arrow’s Paradox

Given k options in an election, k ≥ 3, each voter will have k! choices as to
how to rank the options. We want a function F : (k!)N → k! that takes
everybody’s rankings and gives one ranking for society. We would like a few
conditions on this function.

(1) Unanimity (“Pareto optimality”): If all voters prefer option A to
option B, then the output prefers A to B.

(2) Independence of irrelevant alternatives: The ranking of A and B
in the outcome depends only on every voter’s ranking between A and
B.

Theorem 4.3.1 (Arrow, 1963). Conditions (1) and (2) imply a dictatorship.

Note. Kenneth Arrow shared the Nobel Prize in economics in 1972.

Exercise 4.3.2. Arrow’s theorem fails if we have infinitely many voters (but
still finitely many options).

4.4 Order types

The material on order-types is covered in sections 1.4 and 1.5 of the 2007
notes on Transfinite Combinatorics. η is the order-type of the rational num-
bers.

Theorem 4.4.1. Every countable dense ordering is of type η.

Proof. Let H be a countable set with a dense ordering. We enumerate the
rationals as r0, r1, r2, . . . and the elements of H as h0, h1, h2, . . .. We define
f : Q → H as follows. We set f(r0) = h0. By denseness, there is an element
of h below or above h0, so we let f(r1) be such an element, depending on
whether r1 is less than or greater than r0. We continue in this manner to
define f completely as a monotone injection of Q into H. This is not a
bijection, howver. Similarly, we can get a monotone injection from H to Q.

Exercise 4.4.2. Find two order-types α and β such that there exist monotone
injections α ↪→ β and β ↪→ α but no monotone bijection.
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To fix this, we alternate between assigning f(ri) for the next unassigned
i and f−1(hj) for the next unassigned j. This will give a monotone bijection.

Exercise 4.4.3. Another fix: for all i, choose f(ri) to be the hj with the
smallest j such that the choice is compatible with the ordering of the previous
choices. Prove that this results in a bijection.

Thus, η · 2 = η + η = η. But 2 · η 6= η, because it is not dense.
2 ·ω = ω, but ω ·2 = ω+ω 6= ω because it has an element that is preceded

by infinitely many elements.

Exercise 4.4.4. An ordered set (A, <) is well-ordered if and only if it does
not contain ω∗.

Definition 4.4.5. An ordinal is the order-type of a well-ordered set. The
standard name α of an ordinal α by transfinite recursion as follows: α =
{β | β < α}.

Example 4.4.6.

0 = ∅,

1 = {0} = {∅},
2 = {0, 1} = {∅, {∅}},
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}},
...

ω = {0, 1, 2, . . .},
...

Convention: henceforth, “ordinal” will always refer to the standard name of
the ordinal; the underline will be omitted.

Exercise 4.4.7. If α and β are well-ordered, then one is a prefix of the other.

Exercise 4.4.8. Every set of ordinals has a supremum (least upper bound).

We define ordinal exponentiation αβ by transfinite recursion.

Definition 4.4.9. (a) α0 = 1; (b) αβ+1 = αβα; if β is alimit ordinal then
αβ = supγ<β αγ.
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Exercise 4.4.10. If α and β are countable, then αβ is countable.

Exercise 4.4.11. Every ordinal can be uniquely written in the base-ω number
system. In other words, any ordinal α can be uniquely written as

α = ωβ1k1 + ωβ2k2 + · · ·+ ωβsks,

where the ki are finite and the βi are decreasing.
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