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6 First order definability

Theorem 6.0.1. If Si is a collection of finite sets and |Si| → ∞, then
|
∏

i Si/µ| = 2ℵ0, the cardinality of the continuum.

Theorem 6.0.2 ( Loś). If φ(x1, . . . , xn) is a formula with x1, . . . , xn free
variables, then for all a1, . . . , an ∈ B,

B � φ(a1, . . . , an) ⇐⇒ for a.a. i, Ai � φ(a1[i], . . . , an[i]).

Theorem 6.0.3. Connectedness of graphs is not an elementary property;
that is, it cannot be described by a (possibly even infinite) set of first-order
sentences.

Proof. Let B =
∏
Ai/µ. If we have a sentence φ, then B � φ if and only if

for almost all i, Ai � φ, by  Loś’ theorem.
Now, suppose that connectedness is an elementary property. That would

mean that an ultraproduct of connected graphs is connected. So we just need
to find connected graphs whose ultraproduct is disconnected.

For the graphs, take infinite paths. The following statements hold of an
infinite path, and so must hold in the ultraproduct:

(a) every vertex has degree 2.

(b) there are no cycles of length n, for any n. (This is infinitely many
sentences.)
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So the ultraproduct has continuum-many vertices, every one has degree
2, and there are no cycles. So the ultraproduct must be continuum many
disjoint infinite paths. (In fact, this theory is categorical in all uncountable
cardinalities.)

Theorem 6.0.4. An ultraproduct of disconnected graphs is disconnected.

Proof. In each factor of the product, take two elements, in different connected
components. Make formulas φn(x, y) saying “there is no path of length n
between x and y.” Now apply  Loś’ theorem.

This means that the same proof won’t work to show that disconnectedness
is not an elementary property. However, we can use elementary equivalence:

Definition 6.0.5. A and B are elementary equivalent if for all sentences
φ,

A � φ ⇐⇒ B � φ.

We can now show that disconnectedness is not an elementary property:
a single infinite path is elementary equivalent to continuum many, since the
latter is an ultrapower of the former. (It’s an easy corollary of  Loś’ theorem
that an ultrapower of a structure is elementary equivalent to that structure.)

We can write sentences all of whose finite models are connected graphs:
“if there are n vertices, they are connected.” But there’s no single sentence
(or, equivalently, finite set of sentences) that works.

Theorem 6.0.6. There exist connected finite graphs Ai and disconnected
finite connected graphs Bi such that∏

Ai/µ ∼=
∏
Bi/µ.

Proof. As the Ai, take cycles of increasing length; for the Bi, pairs of cycles.
In both cases, the ultraproduct is continuum many lines (check the axioms
above, and apply the fact that they’re categorical in uncountable cardinali-
ties).

Exercise 6.0.7. Prove  Loś’ theorem by formula induction.

Theorem 6.0.8 (Gödel’s Compactness Theorem). A set of formulas is con-
sistent if and only if every finite subset is consistent.
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Proof. We can prove this using ultrapducts. If S is a set of sentences and
F ⊆ S is a finite subset, there is some model AF � F ; take an ultraproduct
of these sets, as we did in the proof of Erdős-deBruijn.

Theorem 6.0.9 (Erdős-deBruijn). If every finite subgraph of a graph is k-
colorable, then the graph itself is k-colorable.

Exercise 6.0.10. Deduce the Erdős - deBruijn Theorem from Gödel’s Com-
pactness Theorem.

Hint: Introduce a constant (nullary operation) for each node. Represent
the coloring by k unary relations. For each edge, state that its endpoints
don’t have the same color.

Definition 6.0.11. If a, b, and c are cardinalities, we write

a → (b, c)

to mean that in every graph G of cardinality a, either there is a clique of
cardinality b or G has a clique of cardinality c.

Show:

(a) ℵ0 → (ℵ0,ℵ0).

(b) 2ℵ0 6→ (ℵ1,ℵ1); in other words, there’s a graph G whose cardinality is
the continuum, but neither G nor G contain an uncountable clique.

(c) (2ℵ0)+ → (ℵ1,ℵ1).
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