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7.1 Model theory - continued

Definition 7.1. A set of sentences Σ is satisfiable if it has a model:

∃A : A |= Σ

Definition 7.2. A set of sentences Σ is consistent if no contradiction can be
deduced from Σ by a sequence of applications of “rules of formal deduction”.
(“Rules of formal deduction” are things like: if we have ϕ→ ψ and ϕ, then we
can deduce ψ.) “Deducing a contradiction” means deducing both ϕ and ¬ϕ for
some sentence ϕ.

Syntactic inference: Σ ` ϕ if ϕ follows syntatically (by the “rules of formal
deduction”) from Σ.
Semantic inference: Σ |= ϕ if any model for Σ models ϕ:

Σ |= ϕ ⇐⇒ ∀A : A |= Σ =⇒ A |= ϕ

Theorem 7.3 (Gödel’s Completeness Theorem).(
Σ |= ϕ

)
⇐⇒

(
Σ ` ϕ

)
“Whatever is true is provable”; true for first-order logic, propositional calculus.

Exercise 7.4. The completeness theorem can be equivalently stated:

Σ is satisfiable ⇐⇒ Σ is consistent.

The compactness theorem follows from completeness:

Theorem 7.5 (Compactness theorem, reworded). If every finite subset of Σ is
satisfiable, then Σ is satisfiable.

Proof, using completeness theorem. By the completeness theorem, it suffices to
prove: “If every finite subset of Σ is consistent, then Σ is consistent.” Assume
that Σ is not consistent. Then a contradiction can be deduced from Σ. This
deduction has finite length, and thus involves only finitely many sentences from
Σ. Thus that finite subset of Σ is itself inconsistent.

1



Definition 7.6. Recall that A and B are elementary equivalent if

∀ sentences ϕ : A |= ϕ ⇐⇒ B |= ϕ

Theorem 7.7 (Upward Löwenheim–Skolem). If Σ has an infinite model, then
it has models of arbitrarily large cardinality. (Formally, if |A| ≥ ℵ0, then for
any cardinal m, ∃B so that B is elementary equivalent to A and |B| ≥ m.)

Proof. New constants! (Constants are nullary operations.) Choose I with |I| ≥
m. Take A, and add constants fα for each α ∈ I. Let Σ be the theory of A (all
ϕ so that A |= ϕ in the original language), and let Σ′ be obtained by adding
the (essentially trivial) sentences fα 6= fβ for each α 6= β ∈ I. These add no
expressive power to the language, they just force any model to have cardinality
≥ m, since it must have |I| different constants.

We use the compactness theorem to show that Σ′ is satisfiable; as above, any
model will have cardinality ≥ |I| ≥ m. We need to show that any finite subset of
Σ′ is satisfiable. Any finite subset consists of some subset of Σ (which we know
is satisfiable, because A models it) plus some finite number of the sentences
fα 6= fβ . Since A is infinite, we may find an interpretation by choosing distinct
elements for each fα that appears in our finite number of inequalities, and
interpreting the remaining constants by any element of A. Then each of these
finitely many inequalities will be satisfied.

Exercise 7.8. If Σ has aribtrarily large finite models, then it has arbitrarily
large infinite models. (Hint 1: use ultraproducts to reduce to the previous
problem. Hint 2: Don’t use ultraproducts, just Compactness as in the previous
solution.)

Theorem 7.9. If Σ has an infinite model and the language is at most count-
able, then Σ has a countable model; moreover, Σ has models of all infinite
cardinalities.

The proof follows from the previous result (which gave us models of arbi-
trarily large cardinalities) and the following result (which allows us to go down
with the cardinality). First a definition:

Definition 7.10. B is an elementary submodel of A if for every formula ϕ(x,y)
(where x = (x1, . . . , xk) and y = (y1, . . . , y`) are the only free variables in ϕ)
and for every b ∈ B, if

A |= (∃y)(ϕ(b,y)
)

(1)

then
B |= (∃y)(ϕ(b,y)

)
Note that if B is an elementary submodel of A then A and B are elementary

equivalent, but not conversely, as the next exercise shows.

Exercise 7.11. Find a model A and a submodel B such that B and A are
elementary equivalent but B is not an elementary submodel of A. (Hint: ordered
sets.)
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Theorem 7.12 (Downward Löwenheim–Skolem). If the language is at most
countable, and A is infinite, then A has a countable elementary submodel.
Moreover, for any infinite cardinality m ≤ |A|, A has an elementary submodel
of cardinality m.

Proof. The construction of the elementary substructure which we use is some-
thing like the “substructure generated by a subset”, analogous to the subgroup
generated by a subset, or the subfield generated by a subset. The operations
under which we need to close the subset are the “Skolem functions” which for
each existentially quantified formula (1) select a solution. If we start with a
countable subset, the elementary substructure it “generates” will still be count-
able. More generally, if we start from a subset of any infinite cardinality m, the
closure will also have cardinality m.

In particular, set theory has a countable model. Such a model is a countable
set, with a single relation “a ∈ b”. We can talk about subsets by saying that
a′ is a subset of a if for all b such that b ∈ a′, b ∈ a. This leads to apparent
contradiction, since the power set of N is uncountable, while our whole model
itself is countable. This is resolved when we remember that “countable” means
“has a bijection with N”; in this model, we will have sets which externally can
be seen to be countable, but internally are not countable, because there is no
internal bijection with the element representing N.

7.2 The Random Graph

Exercise 7.13 (Exercise from before). Two countable random graphs are iso-
morphic with probability 1.

Proof. Build an isomorphism incrementally. We can send 1 7→ A. Let’s say that
2 is adjacent to 1 in the first graph; then we need to find some vertex in the
second graph to which we may send 2. Any vertex which is adjacent to A in the
second graph will suffice; the probability that no vertex is adjacent to A is 0, so
with probability 1 we may find such a vertex. Perhaps 2 7→ E. Now, we need to
find some vertex in the first graph which we may send to B in the second graph.
Say that B is adjacent to E, but not to E. Then we need to find some vertex
in the first graph which is adjacent to 2 but not to 1. The probability that no
such vertex exists is 0, so with probability 1 we may find such a vertex. Now
alternating back and forth, we build a bijection elementwise; since a probability
measure is countably additive, the probability of trouble at any step is 0, so
with probability 1 our algorithm constructs a bijection.

(The reason that we must alternate between {1, 2, . . .} and {A,B, . . .} is that
we want a bijection. If we just worked with {1, 2, . . .} we would construct an
injection, but could not guarantee that it would be surjective.)

Let’s capture the first-order property of a random graph that makes this
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proof work:

ϕk,` : (∀x1, . . . , xk, y1, . . . , y`)(∃v)
( ∧

i,j

xi 6= yj →

v ∼ x1 ∧ · · · ∧ v ∼ xk ∧ v 6∼ y1 ∧ · · · ∧ v 6∼ y`

)
Claim. The theory R = {ϕk,` : k, ` ∈ ω} is categorical in ℵ0.

(Recall that a theory is categorical in a cardinality m if it has only one
model of that cardinality.) We have essentially just proved this claim: if two
countable graphs both satisfy R then with the back-and-forth method described,
we find an isomorphism between them. We also proved that the probability
Pr

(
countable graph |= R

)
= 1.

Definition 7.14. A set of sentences Σ is complete if for every sentence ϕ, either

Σ |= ϕ or Σ |= ¬ϕ

Exercise 7.15 (Tarski–Vaught principle). If Σ is categorical in some cardinality
m ≥ ℵ0 and Σ has an infinite model then Σ is complete.

Proof. Let A be the unique model of Σ of cardinality m. Suppose A |= ϕ.

Claim. Σ |= ϕ. Assume not. Then (∃B)(B |= Σ ∪ {¬ϕ}). If B is inifinite,
there exists B′ which is elementary equivalent to B and has cardinality m, a
contradiction because B′ |= ¬ϕ so B′ cannot be isomorphic to A. – What if B is
finite? The T-V principle as stated is not exactly correct; Exercise: fix it.

Theorem 7.16 (Fagin). For any sentence ϕ, let

pn := Pr
(
An |= ϕ

)
=

#{. . .}
2(n

2)

where An is a random graph on n vertices. Then limn→∞ pn is either 0 or 1.
In fact lim pn = 1 ⇐⇒ R |= ϕ; otherwise R |= ¬ϕ because R is complete.

Proof. Assume R |= ϕ. Then a finite subset R′ of R already implies ϕ: R′ |= ϕ.
So it suffices to consider the case when ϕ ∈ R (why?). Let ϕ = ϕk,` with
k + ` = t.

For a fixed sequence x1, . . . , xk, y1, . . . , y` of t = k + ` distinct vertices in
a graph on N vertices, the chance that a given other vertex v is “bad,” i. e.,
it does not satisfy ϕk,`, is

(
1 − 1

2t

)
. Thus the chance that every vertex is

bad is
(
1 − 1

2t

)N−t. The number of sequences of t distinct vertices is N(N −
1) . . . (N − t+ 1) < N t. Thus the chance there is some sequence of length t for
which all vertices v are bad, is ≤ N t

(
1 − 1

2t

)N−t. For fixed t, the first term
grows polynomially, while the second decays exponentially; thus as N goes to
∞, the chance ϕk,` is false goes to 0.
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