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8.1 Ultra-integers

Take N with (+, ·, 0, 1, <). Form the ultrapower N∗ = Nℵ0/µ.

Definition 8.1. Divisibility: x | y if

∃z : x z = y.

This is equivalent to: for almost all i, x(i) | y(i).

Definition 8.2. Prime numbers: p is prime if p 6= 1 and (d | p =⇒ d = 1 or
d = p).

Thus p is prime ⇐⇒ for almost all i, p(i) is prime.

Goldbach’s conjecture. If n ≥ 4, n even, then ∃ primes p1, p2 such that
n = p1 + p2.

An even ultrainteger is one which is almost always even; it is ≥ 4 if it is
almost always ≥ 4. Thus assuming Goldbach’s conjecture, if n ≥ 4 and n is
even, then for almost all i, n(i) = p

1
(i) + p

2
(i); this defines prime ultraintegers

p
1

and p
2
.

Shorter proof: Goldbach’s conjecture is a first-order statement, so it is true
in N∗ ⇐⇒ it is true in N.

Fermat’s Last Theorem. (∀x, y, z, n)(n ≥ 3 ∧ xn + yn = zn) → (xyz = 0)

Exercise 8.3. Prove that replacing the equality above with xn + yn + zn =
0, where now x, y, z range over all integers (not just nonnegative integers) is
equivalent to the usual statement of FLT.

Since FLT is true in N, it is also true in N∗: a counterexample x, y, z, n such
that xn + yn = zn, would consist of infinitely many counterexamples to FLT,
one for almost every i.

Fermat’s Little Theorem. p prime, x integer =⇒ p | (xp − x).

Also true for ultra-integers.
Certainly p = (2, 3, 5, 7, 11, . . .) is prime. How about p′ = (11, 17, 23, 29,35, . . . , )?
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Theorem 8.4 (Dirichlet’s theorem). Any infinite arithmetic progression in
which the terms and the increment are relatively prime contains infinitely many
primes.

Exercise 8.5. Prove that every non-constant infinite arithmetic progression
contains an infinite number of composite numbers.

Exercise 8.6. Let p′ be the equivalence class of an arithmetic progression in
which the terms are relatively prime to the increment. Prove: whether or not
p′ is an ultra-prime depends on the ultrafilter.

Theorem 8.7 (4 squares theorem). (∀x)(∃y1, . . . , y4)(x = y2
1 + · · ·+ y2

4)

Are the ultraintegers well-ordered? ω∗ ⊂
(
ωℵ0/µ

)
? Is there an infinite

decreasing sequence of ultraintegers?
Infinitely large ultraintegers: the ordinary integers in N∗ are e.g. (7, 7, 7, . . .).

The ultrainteger (0, 1, 2, 3, . . .) > (9, 9, 9, 9, . . .), since the former is almost always
greater than the latter.

Now (0, 1, 2, 3, . . .)“−1”=(0, 0, 1, 2, . . .) is less than (0, 1, 2, 3, . . .), since the
former is always less than the latter. Iterating this, we obtain an infinite de-
creasing sequence of ultraintegers. Thus N∗ is not well-ordered; this implies that
well-ordered-ness is not a first-order property.

Exercise 8.8. Look up the definition of “solvable group”. Is “solvable group”
elementary? Is “non-solvable group” elementary?

Consider the property of a set being infinite, or of being finite. Which of
these are elementary?

Well, to express “|A| = ∞”, we want sentences Pn so that Pn ⇐⇒ |A| ≥ n;
we may choose

Pn : (∃x1, . . . , xn)
( ∧

i<j

xi 6= xj

)
Thus infinite-ness is elementary. Can finite-ness be elementary? No: consider
the ultraproduct of finite sets of increasing size. If “this set is finite” could be
expressed with a first-order sentence, then it would be true of the ultraproduct
as well, but the ultraproduct is infinite.

8.2 Completeness, categoricity

• complete theory (set of sentences): Σ is complete if for every sentence ϕ,
either Σ =⇒ ϕ or Σ =⇒ ¬ϕ.

(We say that Σ =⇒ ϕ if for any model A |= Σ, A |= ϕ. This was
previously written Σ |= ϕ.)

• categorical in cardinality m: there is a unique model of cardinality m.

Theorem 8.9 (Tarski-Vaught principle, incorrect). If Σ has an infinite model
and Σ is categorical in some infinite cardinal m then Σ is complete.
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Proof. (attempt) Let A |= Σ be the unique model of cardinality m. Given a
sentence ϕ, exactly one of ϕ and ¬ϕ is true in A, WLOG A |= ϕ. We want to
show that Σ =⇒ ϕ; that is, ϕ is true in all models of Σ.

Suppose not, so Σ 6 =⇒ ϕ. Then there exists a model B |= Σ where ϕ is not
true: B |= ¬ϕ.

Combining upward and downward Lowenheim-Skolem theorems, for every
infinite cardinality ν, ∃B′ elementary equivalent to B with cardinality |B′| = ν.
In particular, we may choose B′ to have cardinality m. Then B′ is isomorphic
to A, while A |= ϕ and B′ |= ¬ϕ; this is a contradiction.

The flaw in the proof is that just because we have a model B |= ¬ϕ, we
don’t know that there exists an infinite such model. Counterexamples are easy
to construct: consider the empty theory on the empty language, or less trivially,
consider the theory of complete graphs. The sentence P7 : (∃x1, . . . , x7)(

∧
xi 6=

xj) is satisfied by any infinite model; but any model of cardinality ≤ 6 will satisfy
¬P7. This may seem unsatisfying, since only six models give us any trouble; but
recall that if we had models for Σ ∪ {¬ϕ} of arbitrarily large finite cardinality,
we could apply ultraproducts to construct an infinite model for Σ∪{¬ϕ}. This
would be a contradiction, by the argument above.

This shows that any theory with both finite and infinite models cannot be
complete. To fix this, we make the following change:

Theorem 8.10 (Tarski-Vaught principle, corrected). If Σ has an infinite model
and Σ is categorical in some infinite cardinal m then Σ∪{Pn : n ∈ ω} is complete.
(Equivalently, we could require that Σ has no finite models.)

Exercise 8.11. (Fagin’s Theorem) A first-order sentence about graphs is either
true for almost all finite graphs, or false for almost all finite graphs. We proved
this using the Tarski-Vaught principle, using the fact that the theory of “the
random graph” is categorical in ℵ0. Revisit our argument, with the revised
Tarski-Vaught principle in mind.

8.3 Well-ordered subsets of R
Exercise 8.12. Prove that every well-ordered subset of R (with its usual or-
dering) is countable.

Exercise 8.13 (Lemma). Any collection of disjoint intervals in R is countable.

Now to prove Ex. 8.12, take a well-ordered subset X of R. For each x ∈ X,
let x+ be the successor of x in X (or x+ = ∞ if x = max X). Then for each x,
we take the open interval (x, x+). This collection is disjoint, so by the lemma,
X is countable.

8.4 Transfinite Ramsey theory

Exercise 8.14. Prove ℵ0 → (ℵ0,ℵ0). This means: If you take an infinite
complete graph, and color every edge either red or blue, then there will either
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be an infinite red clique (complete subgraph with only red edges) or an infinite
blue clique.

Exercise 8.15. Prove: 2ℵ0 6→ (ℵ1,ℵ1). This means: There exists a red-blue
coloring of the complete graph on 2ℵ0 vertices such that every red clique and
every blue clique is countable.
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