Problem 180. Suppose \(f(x) = x^4 + ax^3 + bx^2 + cx + 15 \) with integer coefficients, i.e., \(a, b, c \in \mathbb{Z} \). Suppose \(k \in \mathbb{Z} \) is a root of \(f(x) \), i.e., \(f(k) = 0 \). What values could \(k \) be? Narrow down the possibilities to a finite number of cases, independent of \(a, b, c \).

Observation 1.3. The complete graph on \(n \) vertices, denoted by \(K_n \), has \(\binom{n}{2} \) edges.

Observation 1.4. Given \(n \) vertices, there are \(2^{\binom{n}{2}} \) different possible graphs on these \(n \) vertices.

Observation 1.5. An undirected graph on \(n \) vertices has symmetric adjacency matrix and thus diagonalizable with \(n \) real eigenvalues, denoted by \(\lambda_1 \geq \cdots \geq \lambda_n \).

Problem 178. Let \(A, B \in M_n(\mathbb{C}) \). Assume \(AB = BA \). Prove that they have a common eigenvector.

Problem 179. Let \(A, B \in M_n(\mathbb{R}) \), \(A = A^t, B = B^t \) and \(AB = BA \). Prove that they have a common orthonormal eigenbasis.

Exercise 1.1. Suppose \(f(x) = x^4 + ax^3 + bx^2 + cx + 15 \) with integer coefficients, i.e., \(a, b, c \in \mathbb{Z} \). Suppose \(k \in \mathbb{Z} \) is a root of \(f(x) \), i.e., \(f(k) = 0 \). What values could \(k \) be? Narrow down the possibilities to a finite number of cases, independent of \(a, b, c \).

Problem 180. Suppose \(f(x), g(x) \in \mathbb{Z}[x] \) and \(g(x) \) has leading coefficient 1. Prove the division \(f(x) = g(x)q(x) + r(x) \) has integer coefficients quotient and remainder, i.e., \(q(x), r(x) \in \mathbb{Z}[x] \).

Observation 1.6. \(A_G \) denotes the adjacency matrix of the graph \(G \) and \(f_G := f_{A_G} \) denotes the characteristic polynomial of the adjacency matrix \(A_G \).

Exercise 1.7. If \(G, H \) are isomorphic graphs, then \(A_G \) is similar to \(A_H \). In particular, \(f_G = f_H \).

Observation 1.8.

\[
A_{K_n} = \begin{pmatrix}
0 & 1 & \cdots & 1 \\
1 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0
\end{pmatrix} = J_n - I_n,
\]

where

\[
J_n = \begin{pmatrix}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{pmatrix}
\]

Observation 1.9. Suppose an \(n \times n \) matrix \(A \) has eigenvalues \(\lambda_1, \ldots, \lambda_n \) (listed with multiplicity), then the matrix \(A - I \) has eigenvalues \(\lambda_1 - 1, \ldots, \lambda_n - 1 \) with the same multiplicity for each eigenvalue of \(A \).

Observation 1.10. \(J_n \) has \(n - 1 \) dimensional null space and thus has eigenvalue 0 with (geometric) multiplicity \(n - 1 \). The remaining eigenvalue is \(n \), using the trace of \(J_n \). Hence, \(f_{J_n}(t) = t^{n-1}(t - n) \) and thus \(f_{K_n}(t) = (t + 1)^{n-1}(t + 1 - n) \).
Problem 182. Suppose A has eigenvalues $\lambda_1, \cdots, \lambda_n$. Prove that $aA + bI$ has eigenvalues $a\lambda_i + b$ with corresponding multiplicities.

Observation 1.11. Suppose $B = \begin{pmatrix} a & b & \cdots & b \\ b & a & \cdots & \vdots \\ \vdots & \vdots & \ddots & b \\ b & \cdots & b & a \end{pmatrix} = bJ_n + (a - b)I_n$, then B has eigenvalue $a - b$ with multiplicity $n - 1$ and another eigenvalue $(n - 1)b + a$ with multiplicity 1. Hence, $f_B(t) = (t - (a - b))^{n-1}(t - (n-1)b - a)$.

Observation 1.12. If G is a regular graph of degree r (every vertex has degree r), then r is an eigenvalue with eigenvector $(1, \ldots, 1)^t$.

Problem 183. Assume A is a nonnegative matrix with a positive eigenvector x (all coordinates of x are positive) with eigenvalue λ, i.e., $x \neq 0$ and $Ax = \lambda x$. Prove $(\forall$ eigenvalue $\mu)(|\mu| \leq \lambda)$.

Exercise 1.13. If a nonnegative symmetric matrix has a positive eigenvector, then all eigenvectors corresponding to other eigenvalues have some negative coordinates.

Exercise 1.14. If x is a nonnegative eigenvector of the connected graph G then x is strictly positive.

Problem 184. Suppose an undirected graph has sorted eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Prove

(1) $(\forall i)(|\lambda_i| \leq \lambda_1)$
(2) If the graph G is connected, then $(\forall i \geq 2)(\lambda_i < \lambda_1)$
(3) If the graph G is connected, then $|\lambda_n| = \lambda_1$ iff G is bipartite.
(4) If G is a bipartite graph, then $(\forall i)(\lambda_i = -\lambda_n - i + 1)$.

Problem 185. Let $g \in \mathbb{C}[x]$ and $A \in M_n(\mathbb{C})$. Assume A has eigenvalues $\lambda_1, \cdots, \lambda_n$ (listed with multiplicity, i.e., $f_A(t) = \Pi_{i=1}^{n}(t - \lambda_i)$). Prove that the eigenvalues of $g(A)$ are $g(\lambda_1), \cdots, g(\lambda_n)$ (again, listed with multiplicity).

Recall that we proved before, if a regular G with degree r has girth at least 5, then $n \geq r^2 + 1$. For such graph, if a and b are two vertices that are not connected, then they share a unique common neighbor. Next we have this amazing theorem.

Theorem 1.15 (Hoffman-Singleton). If a regular graph of degree $r \geq 1$ has girth at least 5 and $n = r^2 + 1$, then we can only have $r = \{1, 2, 3, 7, 57\}$

Observation 1.16. K_2 represents $r = 1$. C_5 is the example for $r = 2$. Petersen’s graph demonstrates the case $r = 3$. The “Hoffman–Singleton graph” shows $r = 7$ is possible. No example has been found for the case $r = 51$. It remains open.