
Supplementary problems (posted July 4, updated July 5 3pm)
REU 2012

Instructor: László Babai Scribe: Jonathan Gleason

♦ indicates problems that express fundamental facts of linear algebra that you must not miss
(“must problems”). ♥ indicates memorable pieces of creative problem solving (“sweet problems”).

Problem 1. (a) Show that every subgroup of H ≤ (Z,+) is cyclic, i. e., it is of the form H = dZ
for some d (where dZ = {dz | z ∈ Z}).

(b) Use this to show that gcd of integers exists and can be written as a linear combination. (Hint:
Notive that given a, b ∈ Z, the numbers of the form ax+ by form a subgroup of (Z,+).)

♥ Problem 2. (a) Recall that an integer p has the prime property if (∀a, b)( if p | ab then p | a or
p | b. Prove that all prime numbers have the prime property. (Use the fact that the gcd is a linear
combination.)
(b) Infer the uniqueness of prime factorization from (a).

Problem 3. Let a, b, d ∈ Z. Show that if d is a common divisor of a and b and d can be written
as a linear combination of a and b then |d| = gcd(a, b).

♥ Problem 4. Let k be the number of binary digits of max(a, b) where a and b are positive
integers. Show that Euclid’s algorithm to find gcd(a, b) terminates in at most 2k rounds. (Each
round consist of one application of the Division Theorem.) Give a very simple proof.

Problem 5. (a) Define the gcd of polynomials over the field F . (b) Prove that the gcd exists and
can be expressed as a linear combination with coefficients that are themselves polynomials:
(∀f, g ∈ F [x])(∃u, v ∈ F [x])(gcd(f, g) = uf + vg).
(b) Recall that a polynomial f ∈ F [x] is irreducible over F if its degree is at least 1 and (∀g, h ∈
F [x])( if f = gh then eithe g or h has degree zero (is a nonzero constant). These polynomials
correspond to the prime numbers. Prove that every nonzero polynomial has a unique factorization
into irreducible polynomials (unique up to order and scalar multiples). (Hint: copy the ideas for
integers above.)

Problem 6. The Gauss Lemma (Problems 134 and 135 in the main problem set) is the principal
tool for proving irreducibility over the rationals. Prove the Gauss Lemma and use it in the two
problems below.

Problem 7. (a) Prove that the polynomial x4 + 1 is irreducible over Q.
(b) Factor x4 + 1 into its irreducible factors over R.
(c) Prove that x4 + 4 is reducible over Q.

♥ Problem 8. Let a1, . . . , ak be distinct integers. Prove that the following polynomials are irre-
ducible over Q:

(a) f(x) =
(∏k

i=1(x− ai)
)
− 1

(b) g(x) =
(∏k

i=1(x− ai)
)2

+ 1.

♦ Problem 9. Let A,B be n× n matrices over F . Prove: det(AB) = det(A) det(B).
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Problem 10. (a) Find the dimension of C over C, the dimension of C over R, and the dimension
of R over Q. (b) Show that the dimension of the space R[x] of polynomials over R is countable, (c)
Show that the dimension of the space R(x) of rational functions (equivalence classes of fractions of
polynomials) over R is continuum (and therefore uncountable).

♥ Problem 11. A (0, 1)-matrix is a matrix of which every entry is 0 or 1. Let A be a k × n
(0, 1)-matrix with distinct columns. Prove that rk(A) ≥ log2(n). Prove this statement over every
field. (In class this was proved over F2 and as a consequence over all fields of characteristic 0 or 2.
Prove it over F3. The log remains to base 2 regardless of the field.)

♥ Problem 12. Let A = (aij) be a k × n matrix of rank r over the field F . Consider the k × n
matrix B = (a2ij) (we square every entry of A). Prove: rk(B) ≤ r(r + 1)/2.

♦ Problem 13. Let F be a field, let V = Fn, and let ek ∈ V be the vector with a 1 in the kth

component and 0s elsewhere. Let f :

n times︷ ︸︸ ︷
V × · · · × V → F be an alternating multilinear function such

that f(e1, . . . , en) = 1. Show that f = det.

Problem 14. (a) Show that the volume of a parallelepiped defined by three vectors in R3 with
integer coordinates is an integer. (b) Show that the area of a parallelogram defined by two vectors
in R3 with integer coordinates is not necessaily an integer but is the square root of an integer. (c)
Generalize these statements to k-dimensional parellelepipeds in Rn.

Problem 15. Let A be an n× n matrix such that Aij = gcd(i, j). Show that A is non-singular.

♦ Problem 16. (Modular equation) Let U, V ≤ W . Let U + V := {u + v | u ∈ U, v ∈ V }. Show
that

dim(U ∩ V ) + dim(U + V ) = dim(U) + dim(V ) .

♦ Problem 17. Let A,B be matrices of appropriate dimensions over F .
(a) Show that rk(A+B) ≤ rk(A) + rk(B).
(b) Show that rk(AB) ≤ max (rk(A), rk(B)).

Problem 18. (a) Show that a matrix has rank ≤ 1 exactly if it is the product of a column matrix
by a row matrix. (b) Let A be a k × n matrix. (b1) Show that rk(A) ≤ r iff A is the sum of r
matrices of rank ≤ 1. (b2) Show that rk(A) ≤ r iff there exists a k × r matrix B and an r × n
matrix C such that A = BC. (b)

♥ Problem 19. (Rank versus mod 2 rank) Let Hn be a 2n × 2n (0, 1)-matrix whose rows and
columns are labeled by subsets of an n-element set X. For A,B ⊆ X, define HA,B = |A∩B| (mod 2).
Show that rkF2(H) = n while rkQ(H) = 2n − 1.

♦ Problem 20. Let V and W be vector spaces over the same field F . Let {b1, . . . , bm} be a basis
for V and let w1, . . . , wm ∈ W be arbitrary vectors. Show that there exists a unique linear map
ϕ : V →W such that (∀i)(ϕ(bi) = wi).

♦ Problem 21. (Rank-Nullity Theorem) Let V and W be vector spaces and let ϕ : V → W be
linear. Show that dim(V ) = dim (ker(ϕ)) + rk(ϕ). (Recall that rk(ϕ) is defined as the dimension
of Im(ϕ).)

Problem 22. (a) For what primes p do there exist isotropic vectors in F2
p?

(b) Show that for every p, there exist isotropic vectors in F4
p.

(c) Show that for every p, there exist isotropic vectors in F3
p.
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♥ Problem 23. Recall that a subspace W ≤ Fn is totally isotropic if (∀u, v ∈W )(uv̇ = 0) where
the dot denotes the standard dot product. We have seen that in this case, dim(W ) ≤ bn/2c. Prove:
all maximal isotropic subspaces of Fn2 have dimension bn/2c. In other words, all maximal Eventown
club systems are maximum.

Problem 24. Let A and B be k × n matrices. Show: if Ax = Bx for all x ∈ Fn then A = B.

♦ Problem 25. (Computing a linear map from coordinates) Let V and W be vector spaces and
let ϕ : V → W be linear. Let e = (e1, . . . , en) be a basis of V and f = (f1, . . . , fk) a basis of W .
Let v ∈ V be expressed as v =

∑n
i=1 αiei; the αi are the coordinates of v with respect to the basis

e. We write [v]e for the column vector (α1, . . . , αn)T . Similarly for w ∈ W we write [w]f for the
column vector consisting of the coordinates of w with respect to the basis f . Finally we write [ϕ]e,f
for the k × n matrix whose jth column is [ϕ(ej)]f .

Prove that for every v ∈ V we have

[ϕ(v)]f = [ϕ]e,f [v]e.

Problem 26. Let A be a k×n matrix. When does A have a left inverse? A right inverse? Express
your answer in terms of the rank of A.

♥ Problem 27. Consider the “Fibonacci space” of sequences (a0, a1, . . . ) of real numbers satisfying
an+2 = an+1 + an.
(a) Prove that this is a vector space of dimension 2; find a natural basis.
(b) Consider the linear transformation on the Fibonacci space that shifts all sequences to the left
by 1 (it drops a0) (the shift operator). Find the matrix of this transformation in terms of your
natural basis.
(c) Compute the nth power of this matrix. (Hint: What is the nth power of the shift operator?)
(d) Find the eigenvectors and eigenvalues of the shift operator.
(e) Represent the Fibonacci sequence as a linear combination of two eigenvectors. This gives a
striking explicit formula for the Fibonacci numbers.

Problem 28. Find the eigenvalues and the eigenvectors of the rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
over the complex numbers.

Problem 29. In the space of real functions, consider the subspace V spanned by cosx and sinx.
For θ ∈ R, define Tθ : V → V by (Tθ(f)) (x) = f(x − θ) (shift by θ). Show that Tθ is a linear
transformation. Find the matrix representation of Tθ in terms of the basis (cosx, sinx). (You will
get a familiar matrix.)

Problem 30. When is zero an eigenvalue of the square matrix A? Your answer should be “When
A is [blank]”; fill in the blank with one word.

Problem 31. Let ϕ : V → V be a linear transformation. Let v1, . . . vk be eigenvectors of ϕ
corresponding to distinct eigenvalues. Prove: v1, . . . vk are linearly independent.

Problem 32. Let F be any field. (a) Let V be an n-dimensional vector space over F . Find a
linear transformation ϕ : V → V such that ϕn = 0 but ϕn−1 6= 0.
(b) Find an n× n matrix over F such that An = 0 but An−1 6= 0.
(c) Suppose ϕn = 0. Prove: the only eigenvalue of ϕ is 0.
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Problem 33. (a) Prove that every matrix has at least one eigenvector over C.
(b) Find an n×n (0, 1)-matrix A such that A does not have two linearly independent eigenvectors
over C.

♦ Problem 34. Recall that the characteristic polynomial of an n×nmatrix A is fA(t) = det(tI−A)
where I is the identity matrix. Write fA(t) as tn + an−1t

n−1 + · · ·+ a0. Prove: (a) an−1 = − tr(A);
(b) a0 = (−1)n det(A).

(c) A k × k symmetric minor of A is the determinant of a k × k submatrix that is positioned
symmetrically about the diagonal, i. e., the same set of column and row indexes determine the
submatrix. Note that the number of k × k symmetric submatrices is

(
n
k

)
. Prove: (−1)kan−k is the

sum of the k × k symmetric minors.

Problem 35. Recall that a complex number is algebraic if it is a root of a nonzero polynomial
with integer coefficients. Prove that each of the following numbers is algebraic:
(a)
√

2 +
√

3; (b)
√

2 + 3
√

2.

Problem 36. (Field extensions) Let F ⊂ G ⊂ H be fields. Prove:

dimF H = (dimF G)(dimGH).

Problem 37. Let α ∈ C. Let Q[α] denote the set of numbers of the form f(α) for all polynomials
f ∈ Q[x]. Prove: α is algebraic if and only if dimQQ[α] is finite if and only if Q[α] is a field.

Problem 38. (Field of algebraic numbers) (a) Prove that the algebraic numbers form a field. (b)
Prove that the field of algebraic numbers is algebraically closed.

Problem 39. Prove: if A is an n×n matrix over F then there exists a nonzero polynomial f ∈ f [x]
such that f(A) = 0. (Do not use any major theorem; your proof should take no more than a couple
of lines. Use the First Miracle of linear algebra.)

♦ Problem 40. (Change of basis) Let ϕ : V → W be a linear map. Fix an “old basis” e and a
“new basis” e′ in V and similarly an old basis f and a new basis f ′ in W . Let A be the matrix of ϕ
with respect to the old bases, and A′ the matrix of ϕ with respect to the new bases. Let S denote
the correspoinding base change matrices: S = [σ]e where σ : V → V is defined by σ(ej) = e′j .
Define τ : W →W and T = [τ ]f analogously. Prove:

A′ = T−1AS .

Hint: Prove: for all x ∈ Fn (where n = dimV ) we have A′x = T−1ASx.
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