
Supplementary problem set 2 (posted July 6)
REU 2012

Instructor: László Babai Scribe: Matthew Wright

Problem 1. Show that the eigenvectors for distinct eigenvalues are linearly independent.

Problem 2. Show that if A is an n×n matrix with n distinct eigenvalues, then it is diagonalizable.

Problem 3. Show that the geometric multiplicity of an eigenvalue is at most the algebraic multi-
plicity of that eigenvalue.

Problem 4. Show that the following are equivalent:

1. A is diagonalizable

2. There is a basis of eigenvectors of A

3. For each eigenvalue λ of A, the geometric multiplicity of λ is equal to its algebraic multiplicity

Problem 5. Find an n × n matrix with an eigenvalue of algebraic multiplicity n but geometric
multiplicity 1.

Problem 6. Show that if A and B are similar matrices, then their characteristic polynomials are
equal.

Problem 7. Let A be an invertible integer matrix. Show that A−1 is an integer matrix if and only
if detA = ±1.

Problem 8. Prove the Cayley-Hamilton theorem for diagonal matrices. That is, show that if A is
a matrix and fA(x) is the characteristic polynomial of A, then fA(A) = 0.

Problem 9. Prove the Cayley-Hamilton theorem for diagonalizable matrices. Hint: first prove
that if A and B are similar and f is a polynomial, then f(A) and f(B) are similar.

Problem 10. Prove that diagonalizable matrices are dense in An(C).

Problem 11. Infer from the previous problems that the Cayley-Hamilton theorem is also true over
C. Note in particular that it is true over Z.

Problem 12. Prove from the last problem (over Z) that the Cayley-Hamilton theorem is true over
every field (and, in fact, over every commutative ring with identity).

Problem 13. The minimal polynomial mA(x) for a matrix A is the unique polynomial m(x) of
minimum degree, whose leading coefficient is 1, such that m(A) = 0. Show that the minimal
polynomial of a matrix divides its characteristic polynomial.

Problem 14. Prove that λ is an eigenvalue of A if and only if mA(λ) = 0.

Problem 15. Prove that a matrix A ∈ Mn(C) is diagonalizable if and only if the minimal poly-
nomial of A has no repeated roots.

Problem 16. Find an n× n matrix whose minimal polynomial is xn.
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Problem 17. Let f = a0 + a1x+ a2x
2 + · · ·+ anx

n ∈ Z[x]. Assume that f(r/s) = 0, where r/s is
in lowest terms. Show that r|a0 and s|an.

Problem 18. (Triangle Inequality.)

Prove that for any vectors v, w in a real Euclidean space, we have

‖v + w‖ ≤ ‖v‖+ ‖w‖.

Definiton 1. Let ϕ be a linear transpormation of the Euclidean space V . Recall that ϕ is symmetric
if

〈x, ϕy〉 = 〈ϕx, y〉

for all x and y.

Problem 19. Fix an orthonormal basis. Show that a linear map ϕ is symmetric if and only if its
matrix with respect to the orthonormal basis is symmetric.

Definiton 2. Let V be a Euclidean space and ϕ : V → V a symmetric linear transformation. The
Rayleigh Quotient of ϕ is defined by

Rϕ(x) =
〈x, ϕx〉
‖x‖2

.

where x ∈ V , x 6= 0.

Problem 20. Recall Rayleigh’s theorem from class:

λ1 = max
x 6=0

Rϕ(x)

where λ1 is the greatest eigenvalue for ϕ. Prove: λn = minx 6=0Rϕ(x).

Problem 21. (Courant-Fischer theorem) Let ϕ be a symmetric transformation of a real Euclidean
space. Prove: if λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues for ϕ then

λi = max
U≤V

dimU=i

min
x∈U
x6=0

Rϕ(x).

Problem 22. (Interlacing theorem) Let A be a symmetric n × n matrix over R. Let λ1 ≥ λ2 ≥
· · · ≥ λn be the eigenvalues for A. Form the symmetric (n− 1)× (n− 1) matrix B by removing the
jth row and the jth column from A, and let µ1 ≥ µ2 ≥ · · · ≥ µn−1 be its eigenvalues.

Show that
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

(Use the Courant-Fischer theorem.)
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