Supplementary problem set 2 (posted July 6) REU 2012

Instructor: László Babai Scribe: Matthew Wright

- **Problem 1.** Show that the eigenvectors for distinct eigenvalues are linearly independent.
- **Problem 2.** Show that if A is an $n \times n$ matrix with n distinct eigenvalues, then it is diagonalizable.
- **Problem 3.** Show that the geometric multiplicity of an eigenvalue is at most the algebraic multiplicity of that eigenvalue.

Problem 4. Show that the following are equivalent:

- 1. A is diagonalizable
- 2. There is a basis of eigenvectors of A
- 3. For each eigenvalue λ of A, the geometric multiplicity of λ is equal to its algebraic multiplicity

Problem 5. Find an $n \times n$ matrix with an eigenvalue of algebraic multiplicity n but geometric multiplicity 1.

Problem 6. Show that if A and B are similar matrices, then their characteristic polynomials are equal.

Problem 7. Let A be an invertible integer matrix. Show that A^{-1} is an integer matrix if and only if det $A = \pm 1$.

Problem 8. Prove the Cayley-Hamilton theorem for diagonal matrices. That is, show that if A is a matrix and $f_A(x)$ is the characteristic polynomial of A, then $f_A(A) = 0$.

Problem 9. Prove the Cayley-Hamilton theorem for diagonalizable matrices. Hint: first prove that if A and B are similar and f is a polynomial, then f(A) and f(B) are similar.

Problem 10. Prove that diagonalizable matrices are dense in $A_n(\mathbb{C})$.

Problem 11. Infer from the previous problems that the Cayley-Hamilton theorem is also true over \mathbb{C} . Note in particular that it is true over \mathbb{Z} .

Problem 12. Prove from the last problem (over \mathbb{Z}) that the Cayley-Hamilton theorem is true over every field (and, in fact, over every commutative ring with identity).

Problem 13. The minimal polynomial $m_A(x)$ for a matrix A is the unique polynomial m(x) of minimum degree, whose leading coefficient is 1, such that m(A) = 0. Show that the minimal polynomial of a matrix divides its characteristic polynomial.

Problem 14. Prove that λ is an eigenvalue of A if and only if $m_A(\lambda) = 0$.

Problem 15. Prove that a matrix $A \in M_n(\mathbb{C})$ is diagonalizable if and only if the minimal polynomial of A has no repeated roots.

Problem 16. Find an $n \times n$ matrix whose minimal polynomial is x^n .

Problem 17. Let $f = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n \in \mathbb{Z}[x]$. Assume that f(r/s) = 0, where r/s is in lowest terms. Show that $r|a_0$ and $s|a_n$.

Problem 18. (Triangle Inequality.)

Prove that for any vectors v, w in a real Euclidean space, we have

$$||v + w|| \le ||v|| + ||w||.$$

Definition 1. Let φ be a linear transportation of the Euclidean space V. Recall that φ is symmetric if

$$\langle x, \varphi y \rangle = \langle \varphi x, y \rangle$$

for all x and y.

Problem 19. Fix an orthonormal basis. Show that a linear map φ is symmetric if and only if its matrix with respect to the orthonormal basis is symmetric.

Definition 2. Let V be a Euclidean space and $\varphi:V\to V$ a symmetric linear transformation. The Rayleigh Quotient of φ is defined by

$$R_{\varphi}(x) = \frac{\langle x, \varphi x \rangle}{\|x\|^2}.$$

where $x \in V$, $x \neq 0$.

Problem 20. Recall Rayleigh's theorem from class:

$$\lambda_1 = \max_{x \neq 0} R_{\varphi}(x)$$

where λ_1 is the greatest eigenvalue for φ . Prove: $\lambda_n = \min_{x \neq 0} R_{\varphi}(x)$.

Problem 21. (Courant-Fischer theorem) Let φ be a symmetric transformation of a real Euclidean space. Prove: if $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are the eigenvalues for φ then

$$\lambda_i = \max_{\substack{U \le V \\ \dim U = i}} \min_{\substack{x \in U \\ x \ne 0}} R_{\varphi}(x).$$

Problem 22. (Interlacing theorem) Let A be a symmetric $n \times n$ matrix over \mathbb{R} . Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues for A. Form the symmetric $(n-1) \times (n-1)$ matrix B by removing the jth row and the jth column from A, and let $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1}$ be its eigenvalues.

Show that

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$$
.

(Use the Courant-Fischer theorem.)