7 Seventh Class: Wed. 7/9/14

7.1 Roots vs. coefficients of a polynomial, elementary symmetric polynomials, roots vs. minors of the characteristic polynomial

Rotation matrix: With respect to any orthonormal\(^1\) basis \(e = (e_1, e_2)\), where \(e_2\) is counterclockwise to \(e_1\), the rotation matrix is the following:

\[
A := [R_\theta]_e = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

On the other hand, if \(f_1\) and \(f_2\) are unit vectors with an angle \(\theta \neq k\pi\) to \(f_1\) between them, the rotation matrix with respect to the basis \(f = (f_1, f_2)\) is as follows:

\[
B := [R_\theta]_f = \begin{bmatrix}
0 & -1 \\
1 & 2\cos \theta
\end{bmatrix}
\]

To derive this, note that \(R_\theta(f_1) = 0 \cdot f_1 + 1 \cdot f_2 = f_2\) and \(R_\theta(f_2) = -f_1 + (2\cos \theta)f_2\). Recall that the matrix of a transformation \(\varphi : V \rightarrow V\) with respect to the basis \(e = (e_1, \ldots, e_n)\) is

\[
[\varphi]_e = \begin{bmatrix}
[\varphi(e_1)]_e \\
[\varphi(e_2)]_e \\
\vdots \\
[\varphi(e_n)]_e
\end{bmatrix}
\]

where we associate with a vector \(x \in V\) an \(n \times 1\) matrix

\[
[x]_e = \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_n
\end{bmatrix} \in F^n
\]

where the \(\alpha_i\) satisfy

\[
\alpha_1 e_1 + \cdots + \alpha_n e_n = x.
\]

Now we can compare:

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Tr}(A) = \sum a_{ii} = 2\cos \theta)</td>
<td>(\text{Tr}(B) = \sum a_{ii} = 2\cos \theta)</td>
</tr>
<tr>
<td>(\text{det}(A) = (\cos \theta)^2 + (\sin \theta)^2 = 1)</td>
<td>(\text{det}(B) = 1)</td>
</tr>
</tbody>
</table>

It is a fact that the matrices of a linear transformation with respect to two different bases will have the same determinant and the same trace. Determinants and traces are just special cases of a more general invariant: the characteristic polynomial (which has the determinant and the trace as two of its coefficients, up to sign). That is, the characteristic polynomial is an invariant here.

\(^1\)“ortho-” means “perpendicular” and “-normal” means “of unit length”
Division Theorem: For polynomials, we have the following:

\[(\forall f, g \in F[x], g \neq 0)(\exists q, r \in F[x])(f = g \cdot q + r, \deg r < \deg g).\]

Let’s apply the division theorem to a polynomial of degree one: Let \(g(x) = x - \alpha\). Then we get

\[f(x) = (x - \alpha) \cdot q(x) + r(x).\]

Since \(\deg r < 1\), we can only have \(\deg r = 0\) (for \(r\) a non-zero constant) or \(\deg r = -\infty\) (for \(r = 0\)). In either case, \(r\) is constant. Thus we only have

\[f(x) = (x - \alpha) \cdot q(x) + r.\]

To solve for \(r\), plug in \(\alpha\) for \(x\) and obtain

\[f(\alpha) = r.\]

We have then obtained the following theorem:

Theorem:

\[(\forall f, \alpha)(\exists q)(f(x) = (x - \alpha) \cdot q(x) + f(\alpha)).\]

This is equivalent to

\[(\forall f, \alpha)(x - \alpha \mid f(x) - f(\alpha)).\]

Corollary:

\[f(\alpha) = 0 \iff x - \alpha \mid f(x).\]

Fundamental Theorem of Algebra:

\[(\forall f \in \mathbb{C}[x]) (\text{if } \deg f \geq 1 \text{ then } (\exists \alpha \in \mathbb{C})(f(\alpha) = 0)).\]

In other words, every polynomial over \(\mathbb{C}\) of degree at least one has a root in \(\mathbb{C}\).

We can repeat to obtain:

\[f_1(x) = (x - \alpha_1)f_2(x) = (x - \alpha_1)(x - \alpha_2)f_3(x) = \cdots = (x - \alpha_1) \cdots (x - \alpha_n) \cdot f_n(x) = a_n \prod_{i=1}^{n}(x - \alpha_i)\]

since \(f_n(x)\), as a polynomial of degree zero, is a non-zero constant.

For some \(a_n = 1\), suppose

\[f(x) = a_0 + a_1x + \cdots + a_n x^n = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n).\]

What is the relation of the coefficients \(a_i\) and the roots \(\alpha_i\)? (Recall that the roots can have multiplicity greater than one). If we multiply out the second line, we obtain

\[a_{n-1} = -(\alpha_1 + \cdots + \alpha_n) = -\sum_{i=1}^{n} \alpha_i.\]
Similarly, we obtain
\[a_0 = (-1)^n \alpha_1 \cdots \alpha_n = (-1)^n \prod_{i=1}^n \alpha_i. \]

Continuing:
\[a_{n-2} = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \cdots + \alpha_1 \alpha_n + \alpha_2 \alpha_3 + \cdots + \alpha_2 \alpha_n + \cdots + \alpha_{n-1} \alpha_n \]
\[= \sum_{i<j} \alpha_i \alpha_j. \]

Note that the sum above has \(\binom{n}{2} \) terms. Similarly:
\[a_{n-3} = - \sum_{i<j<k} \alpha_i \alpha_j \alpha_k \]
\[\vdots \]
\[a_{n-t} = (-1)^t \sum_{i_1<i_2<\cdots<i_t} \alpha_{i_1} \cdots \alpha_{i_t} \]

The last equation, with \(\binom{n}{t} \) terms in the sum, uses \(\sigma_t(\alpha_1, \ldots, \alpha_n) \), called the degree-\(t \) elementary symmetric polynomial of \(\alpha_1, \ldots, \alpha_n \). Examples of this:
\[\sigma_0(x_1, \ldots, x_n) = 1 \]
\[\sigma_1(x_1, \ldots, x_n) = \sum_{i=1}^t x_i \]
\[\sigma_2(x_1, \ldots, x_n) = \sum_{i<j} x_i x_j \]
\[\sigma_t(x_1, \ldots, x_n) = \sum_{i_1<\cdots<i_t} x_{i_1} x_{i_2} \cdots x_{i_t} \]
\[\sigma_n(x_1, \ldots, x_n) = x_1 \cdots x_n. \]

These elementary symmetric polynomials are called symmetric because we can permute the \(x_1, \ldots, x_n \) and obtain the same polynomials. There are, of course, other symmetric polynomials. For example,
\[x_1^2 + \cdots + x_n^2 \]
is a non-elementary symmetric polynomial, where “non-elementary” just means “not on the list we have decided to call elementary.” That being said, can we express this symmetric polynomial given the elementary symmetric polynomials? In fact:
\[(x_1 + \cdots + x_n)^2 = \sum x_i^2 + 2 \sum_{i<j} x_i x_j \]
\[\sigma_1^2 = \sum x_i^2 + 2 \sigma_2 \]
\[\sum x_i^2 = \sigma_1^2 - 2 \sigma_2. \]

Exercise 7.1. Express \(\sum x_i^3 \) by the \(\sigma_i \).

Treasure: To find a certain treasure chest, we need to discuss the roots of a degree-100 polynomial which begins \(f(x) = x^{100} + 5x^{99} + 13x^{98} + \cdots \). The rest of the fragment has been lost to time.

Exercise 7.2. Prove that not all the roots of this polynomial are real.
Exercise 7.3. Take \(f(x) \in \mathbb{Z}[x] \) where \(f(x) = a_0 + a_1 x + \cdots + a_n x^n \) where \(a_n \neq 0 \). Suppose \(f(x) = 0 \) for \(r, s \in \mathbb{Z} \) satisfying \(\gcd(r, s) = 1 \). Prove that:

\[
\begin{align*}
r &\mid a_0 \\
s &\mid a_n
\end{align*}
\]

This is a necessary but not sufficient condition on rational roots. As an example, if we were to look for the roots of the polynomial \(5x^7 + \cdots + 8 \), we would need only try numbers satisfying

\[
\pm\{1, 2, 4, 8\} \setminus \{1, 5\}.
\]

We are reducing the question of finding rational roots to a finite search problem.

Characteristic polynomials: Given \(A \in M_n(F) \), we look at the characteristic polynomial

\[
f_A(t) = \det(tI - A) = a_0 + a_1 t + \cdots + a_n t^n
\]

This satisfies:

\[
\begin{align*}
a_n &= 1 \\
a_{n-1} &= -\text{Tr}(A) \\
a_{n-2} &= \text{det}(A)
\end{align*}
\]

To obtain an expression for \(a_{n-2} \), first try a \(2 \times 2 \) matrix

\[
A = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix}
\]

to obtain the characteristic polynomial

\[
f_A(t) = \begin{vmatrix} t - \alpha_{11} & -\alpha_{12} \\ -\alpha_{21} & t - \alpha_{22} \end{vmatrix}
\]

\[
= (t - \alpha_{11})(t - \alpha_{22}) - \alpha_{12}\alpha_{21}
\]

\[
= t^2 - (\alpha_{11} + \alpha_{22}) + (\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21})
\]

Hence

\[
a_{n-2} = \sum_{i<j} \frac{(\alpha_{ii}\alpha_{jj} - \alpha_{ij}\alpha_{ji})}{\det(A)}.
\]

This is the sum of the determinants of the symmetric \(2 \times 2 \) minors. Generally, we will have

\[
a_{n-r} = (-1)^r \sum (\text{determinants of } r \times r \text{ symmetric minors}).
\]

This sum has \(\binom{n}{r} \) terms.

Since

\[
f_A(t) = \prod_{\lambda_i}(t - \lambda_i),
\]

We have

\[
\text{det}(A) = (-1)^{n-2} (-1)^{n-2}.
\]
we can again compare roots and coefficients:
\[
\sum \lambda_i = -a_{n-1} = \text{Tr}(A)
\]
and
\[
\sigma_2(\lambda_1, \ldots, \lambda_n) = \sum \text{determinants of } 2 \times 2 \text{ symmetric minors}
\]
\[
\vdots
\]
\[
\sigma_r(\lambda_1, \ldots, \lambda_n) = \sum r \times r.
\]
These are the two most important things to remember:
\[
\boxed{\lambda_1 \cdots \lambda_n = \det(A)}
\]
\[
\boxed{\sum \lambda_i = \text{Tr}(A)}
\]

7.2 Change of basis, similar matrices, diagonalizability

Change of basis: example. If \(e = (e_1, \ldots, e_n) \) is our old basis and \(e' = (2e_1, \ldots, 2e_n) \) our new basis, then from
\[
[x]_{\text{old}} = \begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{pmatrix}
\]
we obtain
\[
[x]_{\text{new}} = \begin{pmatrix}
\frac{\alpha_1}{2} \\
\vdots \\
\frac{\alpha_n}{2}
\end{pmatrix}
\]
since \(\sum_{i=1}^{n} \alpha_i e_i = x = \sum \frac{\alpha_i}{2} \cdot (2e_i) \). Since basis change is a transformation \(\sigma : e_i \mapsto e'_i \) where
\[
S = [\sigma]_e = 2I = \begin{pmatrix} 2 & 0 \\ 2 & \ddots \\ 0 & \ldots & 2 \end{pmatrix},
\]
then we note that
\[
S^{-1} \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \frac{\alpha_1}{2} \\ \vdots \\ \frac{\alpha_n}{2} \end{pmatrix}.
\]

Change of basis: general case.

Exercise 7.4. (!) For any change of basis, prove that
\[
(\forall v \in V) ([v]_{\text{new}} = S^{-1}[v]_{\text{old}})
\]
where \(S \) denotes the basis change matrix
\[
S = \begin{bmatrix} [e'_1]_e & \cdots & [e'_n]_e \end{bmatrix}
\]
In other words, \(S = [\sigma]_{\text{old}} \) where \(\sigma \) is the basis change transformation: \(\sigma(e_i) = e'_i \).

Change of basis for a linear map: example. Now, consider two vector spaces \(V \) and \(W \) over the same field \(F \) and a linear map \(\varphi : V \to W \). If we take the bases \(e = (e_1, \ldots, e_k) \) and \(f = (f_1, \ldots, f_\ell) \) to be bases for \(V \) and \(W \), respectively, where \(k = \dim V \) and \(\ell = \dim W \), then we consider the \(\ell \times k \) matrix
\[
A = [\varphi]_e^f = [\varphi]_{\text{old}}.
\]
These are the old bases. We take the new bases \(e' = (e'_1, \ldots, e'_k) \) and \(f' = (f'_1, \ldots, f'_\ell) \) to make the new matrix
\[
A' = [\varphi]_{e'}^{f'} = [\varphi]_{\text{new}}.
\]
Consider the basis change transformations
\[
\sigma : e \mapsto e', \quad \tau : f \mapsto f'
\]
and associated basis change matrices
\[
S_{k \times k} = [e']_e, \quad T_{\ell \times \ell} = [f']_f.
\]
To change \(A \) to \(A' \), we need left-multiply the \(\ell \times k \) matrix \(A \) by an \(\ell \times \ell \) matrix, likely \(T \) or \(T^{-1} \), and right-multiply \(A \) by a \(k \times k \) matrix, likely \(S \) or \(S^{-1} \). To determine whether we are using the basis change matrices or their inverses, we take the simple case \(e'_i = 2e_i \). Then
\[
A' = 2A = (2I_\ell) \cdot A = A \cdot (2I_k) \cdot S.
\]

Change of basis for a linear map: general case.

Theorem:
\[
A' = T^{-1}AS.
\]

Exercise 7.5. Prove theorem. To use this, use Exercise 7.4 and the fact that
\[
(\forall x)(Ax = Bx) \implies A = B.
\]

Linear transformations: For a linear transformation \(\varphi : V \to V \), we have
\[
A' = S^{-1}AS.
\]
This is such a crucial relation between \(n \times n \) matrices that it has a name:

Definition: The matrices \(A, B \in M_n(F) \) are similar if \(\exists S \in M_n(F) \) and \(\exists S^{-1} \) such that
\[
B = S^{-1}AS.
\]
We write \(A \sim B \). This means that \(A \) and \(B \) describe the same linear transformation under different bases. Similarity is a basic equivalence relation among square matrices. What are the invariants of this equivalence relation?

Question: Does every invertible matrix correspond to a change of basis? Yes.
Exercise 7.6. \(A \sim B \implies \det(A) = \det(B) \).

Proof. We use the multiplicativity of the determinant \((\det(CD) = \det(C) \cdot \det(D)) \) and the fact that \(1 = \det(I) = \det(SS^{-1}) = \det(S)\det(S^{-1}) \) so \(\det(S^{-1}) = \det(S)^{-1} \). Then
\[
det(B) = det(S^{-1}AS) \\
= det(S^{-1})\det(A)\det(S) \\
= det(S^{-1})\det(S)\det(A) \\
= \det(A).
\]

\[\square\]

Exercise 7.7. \(A \sim B \implies \text{Tr}(A) = \text{Tr}(B) \).

Proof. This follows from the following exercise, which has already been assigned.

Exercise 7.8. \(C \in F^{k \times \ell}, D \in F^{\ell \times k} \implies \text{Tr}(CD) = \text{Tr}(DC) \).

Exercise 7.9. If \(A \sim B \), then \(f_A(t) = f_B(t) \). This implies Exercises 7.6 and 7.7.

If \(D = \text{diag}(\alpha_{11}, \ldots, \alpha_{nn}) \), then \(f_D(t) = \prod(t - \alpha_{ii}) \).

Exercise 7.10. Find \(2 \times 2 \) matrices \(A, B \) such that \(f_A(t) = f_B(t) \) but \(A \not\sim B \).

Exercise 7.11. (a) Over \(\mathbb{C} \), every \(n \times n \) matrix is similar to a triangular matrix. (b) This is false over \(\mathbb{R} \) (hint: non-real roots).

We can compute the eigenvalues of triangular matrices just by looking at them; the characteristic polynomial is just \(\prod(t - \alpha_{ii}) \).

Exercise 7.12. Find an eigenvector corresponding to \(\lambda = 2 \) in the matrix
\[
\begin{pmatrix}
3 & 3 & 5 \\
0 & 2 & -7 \\
0 & 0 & 2
\end{pmatrix}.
\]

We might want to look for a candidate for 7.10.

\[
\begin{pmatrix}
3 & 7 \\
0 & 2
\end{pmatrix} \sim \begin{pmatrix}
3 & -1 \\
0 & 2
\end{pmatrix}
\]

Look at the linear transformation \(\varphi : V \to V \) and the matrix
\[
[\varphi]_e = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \ddots & 0 \\
0 & \cdots & \lambda_n
\end{pmatrix}.
\]

What can we say about \(e \)?

Def. We say that the basis \(e = (e_1, \ldots, e_n) \) of \(V \) is an eigenbasis of the linear transformation \(\varphi : V \to V \) if each \(e_i \) is an eigenvector of \(\varphi \). Note: An eigenbasis is associated with a linear transformation, but it is a basis not of the transformation but of the space.

Proposition: \([\varphi]_e \) is diagonal iff \(e \) is an eigenbasis of \(\varphi \).

Definition: \(A \in M_n(F) \) is diagonalizable if \(A \) is similar to a diagonal matrix.
Exercise 7.13. \(A \) is diagonalizable iff \(A \) has an eigenbasis.

Here we view \(A \) as a linear transformation of \(F^n \) under the rule \(x \mapsto Ax \) (\(x \in F^n \)).

Exercise 7.14.

\[
A = \begin{pmatrix} 3 & 7 \\ 0 & 2 \end{pmatrix} \sim \begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix} = B.
\]

These matrices are diagonalizable since they have two distinct eigenvalues which are therefore linearly independent, which means these vectors form a basis and thus an eigenbasis. It follows that,

\[
A \sim \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \sim B.
\]

So to solve Ex. 7.10, we have to avoid distinct eigenvalues.

Exercise 7.15. Decide:

\[
\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \sim \begin{pmatrix} 2 & 5 \\ 0 & 2 \end{pmatrix}.
\]

Exercise 7.16. (Reward problem) Find the eigenvalues and the eigenvectors of the rotation matrix over \(\mathbb{C} \). \([R_\theta]\) is diagonalizable over \(\mathbb{C} \).