In these notes, \(\mathbb{F} \) denotes a field. The most important examples we need are \(\mathbb{F} = \mathbb{C} \) and \(\mathbb{F} = \mathbb{R} \), so you can just think of these two. Other important cases include \(\mathbb{F} = \mathbb{Q} \) and \(\mathbb{F} = \mathbb{F}_p \). Some of the results only work over \(\mathbb{C} \), however.

Definition. A (univariate) polynomial \(f \in \mathbb{F}[x] \) (over the field \(\mathbb{F} \)) is given by the formal expression \(f(x) = \sum_{k=0}^{n} a_k x^k \). The \(a_k \in \mathbb{F} \) are called the coefficients of \(f \). Two polynomials are equal if they have the same coefficients (except that zero coefficients need not be written). The degree of \(f \) is \(\deg(f) = \max\{j : a_j \neq 0\} \). In particular, the degree of the zero polynomial is \(\deg(0) := \max\emptyset = -\infty \).

Exercise 13.1. Show that
(a) \(\deg(f + g) \leq \max\{\deg f, \deg g\} \).
(b) \(\deg(f \cdot g) = \deg(f) + \deg(g) \).

Remark. The value \(\deg(0) = -\infty \) is necessary to preserve properties (a) and (b).

Definition. A bivariate polynomial is given by the formal expression \(f(x,y) = \sum a_{ij} x^i y^j \), where \(a_{ij} \in \mathbb{F} \). The degree of \(f \) is given by \(\deg(f) = \max\{i + j : a_{ij} \neq 0\} \). Again, \(\deg(0) := -\infty \). The space of these polynomials is denoted \(\mathbb{F}[x,y] \). The space \(\mathbb{F}[x_1, \ldots, x_k] \) of polynomials in \(k \) variables (multivariate polynomials) and the degree of such polynomials is defined analogously.

Exercise 13.2. We write \(\mathbb{F}^{\leq n}[x] \) to denote the space of polynomials of degree \(\leq n \).
(a) Show that \(\dim(\mathbb{F}^{\leq n}[x]) = n + 1 \).
(b) Find \(\dim(\mathbb{F}^{\leq n}[x,y]) \).
(c) Find \(\dim(\mathbb{F}^{\leq n}[x_1, \ldots, x_k]) \). The answer is a binomial coefficient involving \(n \) and \(k \).

Exercise 13.3. (Division Theorem for Integers)
For any \(a, b \in \mathbb{Z} \), if \(b \neq 0 \) then \((\exists q, r \in \mathbb{Z})(a = bq + r \text{ and } 0 \leq r < |b|) \).

Exercise 13.4. (Division Theorem in \(\mathbb{F}[x] \))
For any \(f, g \in \mathbb{F}[x] \), if \(g \neq 0 \) then \((\exists q, r \in \mathbb{F}[x])(f = gq + r \text{ and } \deg(r) < \deg(g)) \).
Exercise 13.5. Show that $f(x) = q(x)(x - \alpha) + f(\alpha)$.

Definition. Suppose that $f, g \in \mathbb{F}[x]$, we say that g divides f, denoted by $g \mid f$, if $(\exists q \in \mathbb{F}[x])(f = qg)$.

Remark. (1) $(\forall g \in \mathbb{F}[x])(g \mid 0)$. (2) $0 \mid f$ iff $f = 0$.

Definition. The value $\alpha \in \mathbb{C}$ is a double root of $f \in \mathbb{C}[x]$ if $(x - \alpha)^2 \mid f$. The multiplicity of root α in f is given by $\max\{k : (x - \alpha)^k \mid f\}$.

Exercise 13.6.

(a) α is a multiple root (multiplicity ≥ 2) of $f \in \mathbb{C}[x]$ iff $f(\alpha) = f'(\alpha) = 0$.

(b) Characterize multiplicity in terms of the derivative.

(c) Prove that $x^{100} - x + 1$ has no multiple roots in \mathbb{C} by hand calculation.

(The proof should be just a few lines.)

Theorem (Fundamental Theorem of Algebra).

If $f \in \mathbb{C}[x]$ and $\deg(f) \neq 0$, then $(\exists \alpha \in \mathbb{C})(f(\alpha) = 0)$, i.e., f has a complex root.

Theorem (Fundamental Theorem of Algebra V.2).

For all $f = \sum_{i=1}^{n} a_i x^i \in \mathbb{C}[x]$ such that $\deg f = n$, there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ such that $f(x) = a_n \prod_{i=1}^{n} (x - \alpha_i)$.

Example: $x^n - 1 = \prod (x - \omega^i)$, where $\omega = e^{2\pi i/n}$ ($i = \sqrt{-1}$). The roots $1, \omega, \omega^2, \ldots, \omega^{n-1}$ are the n-th roots of unity.

Exercise 13.7. Prove that the sum of the n-th roots of unity is 0.

Definition. The order of z is defined as $\text{ord}(z) := \min\{k \in \mathbb{N} : z^k = 1\}$.

Exercise 13.8.

(a) Suppose that $\text{ord}(z) = k$. Show that $(\forall \ell)(z^\ell = 1 \iff k \mid \ell)$.

Hint: \Leftarrow is trivial. \Rightarrow uses the Division Theorem.

(b) Suppose that $\text{ord}(z) = k$. What is $\text{ord}(z^2)$?

Exercise 13.9.

(a) Consider the equilateral triangle inscribed in a unit circle (circle of radius 1). Show that its sides have length $\sqrt{3}$.

(b) \heartsuit Consider a regular n-gon inscribed in a unit circle; let its vertices be A_0, \ldots, A_{n-1}.

Show that $\prod_{j=1}^{n-1} A_0 A_j = n$.

Here $A_0 A_j$ denotes the distance between A_0 and A_j.

2
Exercise 13.10. (Rank-Nullity Theorem)
Let \(f : V \to W \) be a homomorphism. Then, \(\dim(\ker(f)) + \dim(\text{im}(f)) = \dim(V) \).

Theorem. Consider the homogeneous system of linear equations given by

\[
\begin{align*}
 a_{11}x_1 + \ldots + a_{1n}x_n &= 0 \\
 a_{21}x_1 + \ldots + a_{2n}x_n &= 0 \\
 &\vdots \\
 a_{k1}x_1 + \ldots + a_{kn}x_n &= 0
\end{align*}
\]

\((k \text{ equations in } n \text{ unknowns}). Using matrix notation, this can be written concisely as

\[Ax = 0,\]

where \(A = (a_{ij})_{k \times n} \) and \(x = (x_1, \ldots, x_n)^T \). (The \(T \) indicates “transpose,” so this is a column vector). We define the solution space to be \(U = \{x \in \mathbb{R}^n \mid Ax = 0\} \leq \mathbb{R}^n \). Then

\[\dim U = n - \text{rank}(A).\]

Proof. Define the homomorphism \(f : \mathbb{R}^n \to \mathbb{R}^k \) by \(f : x \mapsto Ax \). Then, \(\ker f = U \), so the kernel of \(f \) is the solution space. Also, \(\text{im } f = \text{colspace}(A) \), so \(\dim(\text{im } f) = \text{rank } A \). Use the Rank-Nullity Theorem.

Exercise 13.11. Let \(A \in \mathbb{C}^{k \times n} \) and \(B \in \mathbb{C}^{n \times k} \). Show that \(\text{Tr}(AB) = \text{Tr}(BA) \).

Exercise 13.12. Let \(A \in M_n(\mathbb{C}) \). The characteristic polynomial of \(A \) is defined by \(f_A(t) := \det(tI - A) \).

(a) Show that \(f_A(t) = t^n - (\text{Tr } A)t^{n-1} + \ldots \pm (\det A) \).

Decide the sign of the last term.

(b) Find the coefficient of \(t^{n-2} \) in \(f_A(t) \).

(c) Generalize.

Exercise 13.13. Find the characteristic polynomial of

\[
\begin{pmatrix}
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 1 \\
 5 & 0 & -1 & 7 & 2
\end{pmatrix}.
\]

Generalize this result.

Definition. The **algebraic multiplicity** of an eigenvalue \(\lambda \) of \(A \) is the multiplicity of \((t - \lambda) \) in \(f_A(t) \). The **geometric multiplicity** of \(\lambda \) of \(A \) is the number of linearly independent eigenvectors to \(\lambda \).
Exercise 13.14. For any $\lambda \in \mathbb{C}$, let $U_\lambda = \{x : Ax = \lambda x\} \subseteq \mathbb{C}^n$.

(a) Show that the geometric multiplicity of A is equal to $\dim(U_\lambda)$.

(b) Show that $\dim(U_\lambda) = n - \text{rank}(\lambda I - A)$

Exercise 13.15. Show that $\text{geom-mult}(\lambda) \leq \text{alg-mult}(\lambda)$.

Exercise 13.16. Show that $\det(AB) = \det(A) \cdot \det(B)$.

Exercise 13.17. Show that if v_1, \ldots, v_k are eigenvectors of A to distinct eigenvalues, then they are linearly independent.

Definition. Let $A, B \in M_n(\mathbb{C})$. We say that A and B are similar, denoted $A \sim B$, if $(\exists C \in M_n(\mathbb{C}))(B = C^{-1}AC)$.

Exercise 13.18. Suppose that $A \sim B$. Show that the following hold:

(a) $\text{Tr}(A) = \text{Tr}(B)$.

(b) $\det(A) = \det(B)$.

(c) $f_A(t) = f_B(t)$.

Definition. A matrix $A \in M_n(\mathbb{C})$ is diagonalizable if A is similar to a diagonal matrix.

Definition. An eigenbasis of $A \in M_n(\mathbb{C})$ is a basis of \mathbb{C}^n consisting of eigenvectors of A.

Exercise 13.19. Suppose that $A \in M_n(\mathbb{C})$. Show that the following are equivalent:

(a) A is diagonalizable

(b) A has an eigenbasis

(c) For every (complex) eigenvalue λ of A, $\text{geom-mult}(\lambda) = \text{alg-mult}(\lambda)$.

Exercise 13.20. (a) Show that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable. (Done in class)

(b) Show that $\begin{pmatrix} 1 & 1 \\ 0 & 75 \end{pmatrix}$ is diagonalizable.

(c) Show that $\begin{pmatrix} 7 & s \\ 0 & 7 \end{pmatrix}$ is diagonalizable iff $s = 0$.

Exercise 13.21. Consider the rotation matrix $R_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Find a (complex) eigenbasis for R_θ and find the eigenvalues of R_θ. Note: the eigenbasis will not depend on θ.

Exercise 13.22. Show that if $f_A(t)$ has no multiple roots, then A has an eigenbasis.

Exercise 13.23. If $A \in M_n(\mathbb{C})$, then A is similar to a triangular matrix. Hint: Induction.

Exercise 13.24. If $A \in M_3(\mathbb{R})$, then A has an eigenvector (in \mathbb{R}^3).