15.1 Translates, Affine Subspaces, and Systems of Linear Equations

A system of linear equations is given by

\begin{align*}
 a_{11}x_1 + \ldots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + \ldots + a_{2n}x_n &= b_2 \\
 \vdots & \quad \vdots \\
 a_{k1}x_1 + \ldots + a_{kn}x_n &= b_k
\end{align*}

This may be written more concisely as

\[A\vec{x} = \vec{b} \quad (1) \]

where \(A = (a_{ij}) \in \mathbb{F}^{k \times n} \), \(\vec{x} = (x_1,\ldots,x_n)^T \in \mathbb{F}^n \), and \(\vec{b} = (b_1,\ldots,b_k)^T \in \mathbb{F}^k \). Equation (1) is solvable if there exists a satisfying \(\vec{x} \).

Theorem. \(A\vec{x} = \vec{b} \) is solvable iff \(\vec{b} \in \text{col-space}(A) \).

Proof. If \(A = [\vec{a}_1 \cdots \vec{a}_n] \), Equation (1) becomes \(A\vec{x} = x_1\vec{a}_1 + \ldots + x_n\vec{a}_n = \vec{b} \).

Exercise 15.1. \(\exists \vec{x} \) \((A\vec{x} = \vec{b}) \iff \text{rank}(A) = \text{rank} \left(A|\vec{b} \right) \).

Definition. Let \(S \subseteq V \) and \(v \in V \). The translate of \(S \) by \(v \) is \(S + v = \{ s + v : s \in S \} \). An affine subspace is a translate of a subspace. An affine combination of \(v_1,\ldots,v_k \) is \(\sum_i \alpha_i v_i \) such that \(\sum_i \alpha_i = 1 \).

Definition. Let \(\text{Aff}(\vec{a},\vec{b}) := \{ \text{affine combinations of } \vec{a} \text{ and } \vec{b} \} \). More generally, for \(S \subseteq V \), let \(\text{Aff}(S) := \{ \text{ all affine combinations of elements of } S \} \). If \(S \) is an infinite set, an affine combination of \(S \) contains only expressions with a finitely many non-zero coefficients. Notice that \(\text{Aff}(\emptyset) = \emptyset \).

Exercise 15.2. Associate to a vector \(\vec{a} \) with ‘tail’ at 0 the point \(A \) at the ‘head’ of \(\vec{a} \). We keep this convention throughout this exercise.
(a) Show that Aff(\vec{a}, \vec{b}) is exactly the line through points A and B.

(b) Show that Aff($\vec{a}, \vec{b}, \vec{c}$) is exactly the plane through A, B, and C.

Exercise 15.3. Show: for $\emptyset \neq S \subseteq V$ the following are equivalent:

1. S is a translate of a subspace.
2. Aff(S) = S, i.e., S is closed under affine combinations.

Exercise 15.4. Show: the intersection of any number of affine subspaces is either an affine subspace or empty.

Exercise 15.5. Show: the set $\{x : Ax = b\}$ is either an affine subspace or empty, i.e., any affine combination of solutions is a solution.

Exercise 15.6. Let $U = \{x : Ax = 0\}$ and $S = \{x : Ax = b\}$. Show that if $S \neq 0$ then S is a translate of U by any $s \in S$.

Proof. In other words, if $As = b$, then $U + s = S$. In other words, if $As = b$, then $(\forall u)(Au = 0 \iff A(u + s) = b)$. □

Definition. The *dimension* of an affine subspace S is, for any $s \in S$, given by $\dim(S) = \dim(S - s)$.

Corollary. If $Ax = b$ is solvable then the set of solutions is an affine subspace of dimension $n - \text{rank}(A)$.

15.2 Transpose

Definition. Let $A = (a_{ij})_{k \times n}$. The *transpose* of A is $A^T = (a_{ji})_{n \times k}$.

For example, if $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$, then $A^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$.

Exercise 15.7.

(a) Show: $(AB)^T = B^T \cdot A^T$.

(b) Show: $\text{rank}(A^T) = \text{rank}(A)$.

(c) Show: $\det(A^T) = \det(A)$. Hint: use part (d) below.

(d) Show that $\text{sgn}(\sigma) = \text{sgn}(\sigma^{-1})$.
15.3 \(\text{rank}(AB) \leq \min\{\text{rank}(A), \text{rank}(B)\} \)

Proof. First we show that \(\text{rank}(AB) \leq \text{rank}(A) \). Note that \(\text{rank}(AB) \leq \text{rank}(A) \iff \text{dim}([\text{col-space}(AB)]) \leq \text{dim}([\text{col-space}(A)]) \). But, \(AB = [Ab_1, \ldots, Ab_n] \) and \(Ab_j \in \text{col-space}(A) \). So, each of the columns of \(AB \) is contained in \(\text{col-space}(A) \), so \(\text{col-space}(AB) \leq \text{col-space}(A) \).

Now we show that \(\text{rank}(AB) \leq \text{rank}(B) \).

First Proof: Show that \(\text{row-space}(AB) \leq \text{row-space}(B) \) by the same argument as above. Second Proof: \(\text{rank}(AB) = \text{rank}((AB)^T) = \text{rank}(B^T A^T) \leq \text{rank}(B^T) = \text{rank}(B) \). □

15.4 Right and Left Inverses

Definition. Let \(A \in \mathbb{F}^{k \times n} \). A **right inverse** of \(A \) is a matrix \(B \in \mathbb{F}^{n \times k} \) such that \(AB = I_k \).

A **left inverse** of \(A \) is a matrix \(C \in \mathbb{F}^{k \times n} \) such that \(BA = I_k \).

Theorem. \(A \) has a right inverse iff \(A \) has full row rank. \(A \) has a left inverse iff \(A \) has full column rank.

Proof. If \(B \) is a right inverse of \(A \), then \(AB = [Ab_1 \cdots Ab_k] = [e_1 \cdots e_k] \). Such a \(B \) exists iff \((\forall i = 1 \ldots k)(\exists b_i)(Ab_i = e_k) \iff (\forall i = 1 \ldots k)(\exists b_i)(e_i \in \text{col-space}(A)) \iff \text{col-space}(A) = \mathbb{F}^k \iff \text{rank}(A) = k \).

The left inverse argument is similar using row rank. □

Exercise 15.8. Prove the second half of the above theorem using transposes.

Exercise 15.9. If \(A \in \mathbb{F}^{k \times n} \) and \(k < n \), then \(A \) cannot have a left inverse.

Exercise 15.10. If \(A \in \mathbb{R}^{k \times n} \) and \(A \) has full row rank, then \(A \) has infinitely many right inverses.

Exercise 15.11. Find a basis of \(\mathbb{F}^{k \times n} \). Note that \(\text{dim}(\mathbb{F}^{k \times n}) = k \cdot n \).

Exercise 15.12. The set of inverses of \(A \) (if nonempty) is an affine subspace of \(\mathbb{F}^{n \times k} \) of what dimension?

15.5 Potpourri

Exercise 15.13. Let \(A \in \mathbb{Z}^{k \times n} \).

(a) Show: \(\text{rank}_{\mathbb{R}}(A) = \text{rank}_{\mathbb{Q}}(A) \).

(b) Let \(\text{rank}_{\mathbb{F}_p}(A) := \text{rank}_{\mathbb{F}_p}(A) \). Show: \(\text{rank}_{\mathbb{F}_p}(A) \leq \text{rank}_{\mathbb{R}}(A) \).

(c) Find a \((0,1)\)-matrix (every entry is zero or 1) such that \(\text{rank}_2(A) < \text{rank}_R(A) \).

Find short, elegant solutions.

Exercise 15.14 (Pirate’s treasure). Show that not all the roots of \(x^{100} + 5x^{99} + 13x^{98} + \ldots \) are real. (The rest of the coefficients are unknown.)
Exercise 15.15. Let \(f = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \) with roots \(\alpha_1, \ldots, \alpha_n \in \mathbb{C} \). Assume \(a_0 a_n \neq 0 \). Let \(g = a_n + a_{n-1} x + \ldots + a_1 x^{n-1} + a_0 x^n \). What are the roots of \(g \)?

Exercise 15.16. Let \(f \in \mathbb{R}[x] \). If \(z = a + bi \in \mathbb{C} \) (\(i = \sqrt{-1} \)), the complex conjugate of \(z \) is \(\bar{z} = a - bi \). Let \(z \in \mathbb{C} \). Prove: if \(f(z) = 0 \) then \(f(\bar{z}) = 0 \); furthermore, \(\bar{z} \) and \(z \) have the same multiplicity.

Exercise 15.17. Let \(f \in \mathbb{R}[x] \). Then, \(f \) can be factored into linear and quadratic factors over \(\mathbb{R} \). (Of course, over \(\mathbb{C} \), \(f \) can be factored into linear factors.)

Exercise 15.18. Give a second proof of the statement: if \(n \) is odd and \(A \in M_n(\mathbb{R}) \), then \(A \) has a real eigenvector. (Use the preceding exercise.)

15.6 Matrices vs. Linear Maps

Let \(V \) be a vector space of dimension \(n \) and let \(W \) a vector space of dimension \(k \). Let \(\{e_1, \ldots, e_n\} \) be a basis of \(V \).

Theorem. \((\forall w_1, \ldots, w_n \in W)(\exists! \phi : V \to W)(\forall i)(\phi(e_i) = w_i).\)

We have seen the uniqueness of \(\phi \) in class.

Exercise 15.19. Prove the existence of \(\phi \) by defining \(\phi(x) = \sum \alpha_i w_i \) for any \(x = \sum \alpha_i e_i \in V \). (Check this gives a linear map and maps \(e_i \mapsto w_i \).)

We represent vectors as the column matrices by their coordinates with respect to the given basis. We write \([x]_\xi = (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{F}^n \) to express the relation \(x = \sum_{i=1}^n \alpha_i e_i \).

Next, we want to represent linear maps by matrices. In the light of the Theorem above, we need to state the image of each basis vector of \(V \). These images are in \(W \) so we need a basis of \(W \) for reference; let \(\{f_1, \ldots, f_n\} \) be a basis of \(W \). Let \(x \in V \).

Let \(\phi : V \to W \). We represent \(\phi \) by a matrix of which the \(j \)-th column lists the coordinates of \(\phi(e_j) \) in terms of the basis \(\{f_i\} \) of \(W \).

\[
[\phi]_{\xi,f} = \begin{bmatrix}
[\phi(e_1)]_{f} & \ldots & [\phi(e_n)]_{f}
\end{bmatrix}
\]

Definition. \(\text{Hom}(V,W) := \{\phi : V \to W : \phi \text{ is a linear map}\} \).

Exercise 15.20. As vector spaces, \(\text{Hom}(V,W) \cong \mathbb{F}^{k \times n} \), so \(\text{dim}(\text{Hom}(V,W)) = kn \). \(\cong \) denotes that there exists a bijection between the two spaces that is a vector space isomorphism.

Exercise 15.21. Let \(\phi \in \text{Hom}(V,W) \) and \(x \in V \). Show that coordinates of \(\phi(v) \) in terms of basis \(\{f_i\} \) of \(W \) can be calculated as

\[
[\phi(v)]_{f} = [\phi]_{\xi,f} \cdot [v]_{\xi}
\]

Exercise 15.22. Let \(A, B \in \mathbb{F}^{k \times n} \). If \((\forall x \in \mathbb{F}^n)(Ax = Bx) \), then \(A = B \).
Exercise 15.23. Suppose that \(\phi \in \text{Hom}(V, W) \) and \(\psi \in \text{Hom}(W, Z) \). Suppose \(V, W, Z \) have bases \(e, f, g \) respectively. Show:

\[
[\psi \phi]_{e,g} = [\psi]_{f,g} \cdot [\phi]_{e,f}
\]

Note: this exercise shows why we multiply matrices the way we do.

Proof. We need only check that for any \(v \in V \), it holds that \([\psi \phi][v] = [\psi][\phi][v] \). But, by repeated application of the previous exercise, \([\psi](\phi[v]) = [\psi][\phi v] = ([\psi \phi])v \).

Exercise 15.24. Use the preceding exercise to give a straightforward proof, without any calculation, that multiplication of matrices is associative.

Example. Find the matrix of the linear transformation \(\frac{d}{dx} : \mathbb{R}^\leq_n x \to \mathbb{R}^\leq_n x \) relative to the basis \(b = 1, x, x^2, \ldots, x^n \). Then,

\[
\left[\frac{d}{dx} \right]_{b,b} = \begin{bmatrix} a_0 & 0 & 0 & \cdots & 0 \\ a_1 & 0 & 0 & \cdots & 0 \\ a_2 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_n & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} a_1 \\ 2a_2 \\ 3a_3 \\ \vdots \\ na_n \\ 0 \end{bmatrix}
\]

Example. Let \(R_\theta \) denote the rotation of the plane by \(\theta \) about the origin. Let \(e_1 \) and \(e_2 \) be two perpendicular unit vectors in counter-clockwise order; let \(e = (e_1, e_2) \).

Then \(R_\theta(e_1) = \cos \theta \cdot e_1 + \sin \theta \cdot e_2 \) and \(R_\theta(e_2) = -\sin \theta \cdot e_1 + \cos \theta \cdot e_2 \). So

\[
[R_\theta]_e = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}
\]

Since \(R_\alpha \cdot R_\beta = R_{\alpha + \beta} \), we obtain

\[
\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \cdot \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} = \begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix}
\].

Infer the addition formulas for trig functions.

Exercise 15.25. Consider the basis \(f = \{f_1, f_2 = R_\theta(f_1)\} \). What is \([R_\theta]_f \)? Compute Tr and det of this matrix with the corresponding data of the Example above.