5.1 Linear Algebra

Exercise 5.1. If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of a matrix, show that
(a) $\text{tr}(M) = \sum_{i=1}^{n} \lambda_i$.
(b) $\det(M) = \prod_{i=1}^{n} \lambda_i$.

Exercise 5.2. Find the eigenvalues of
(a)
\[
M = \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix}
\]

(b)
\[
M = \begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1
\end{pmatrix}
\]

(c)
\[
M = \begin{pmatrix}
a & b & b & \cdots & b \\
b & a & b & \cdots & b \\
b & b & a & \cdots & b \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b & b & b & \cdots & a
\end{pmatrix}
\]

Exercise 5.3. Recall that a Hermitian matrix M satisfies $M = M^\dagger$ (conjugate-transpose). Prove that the eigenvalues of a Hermitian matrix are real.

Exercise 5.4. Recall that the Rayleigh quotient $R_A(v)$ is defined by
\[
R_A(v) = \frac{\langle v, Av \rangle}{\langle v, v \rangle}.
\]
Let A be an $n \times n$ matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$. Prove $\max_{v \in \mathbb{R}^n \setminus \{0\}} R_A(v) = \lambda_1$, $\min_{v \in \mathbb{R}^n \setminus \{0\}} R_A(v) = \lambda_n$.

5.2 Graph Theory

Exercise 5.5. For any graph with vertices V and edges E, prove that
\[\sum_{v \in V} \deg(i) = 2|E|. \]

Exercise 5.6. Prove that the number of people on Earth who have made an odd number of handshakes is even.

Definition. Define the adjacency matrix A_G of a graph G by the rule that $A_{ij} = 1$ if $i \neq j$ and the vertices i and j are adjacent, and $A_{ij} = 0$ otherwise. (So A is an $n \times n$ matrix with all entries 0 or 1.)

Exercise 5.7. Let A_G denote the adjacency matrix of the graph G. Let $\mu_1 \geq \ldots \geq \mu_n$ be eigenvalues of A_G. Prove that
\[\frac{1}{n} \sum_{i=1}^{n} \deg(u) \leq \mu_1 \leq \max_{i} \deg(i). \]

Exercise 5.8. With A_G the adjacency matrix and μ_1 the largest eigenvalue as above, prove that
\[\mu_1 = \max_{v \in \mathbb{R}^n \setminus \{0\}} \frac{\langle v, Av \rangle}{\langle v, v \rangle}. \]

Exercise 5.9. Prove that
\[\sum_{i=1}^{n} \mu_i^2 = 2|E| = \sum_{i \in V} \deg(i). \]

(Hint: think about A^2.)

Definition. Define the Laplacian matrix L_G of a graph G by the rule that $A_{ij} = -1$ if $i \neq j$ and the vertices i and j are adjacent, $A_{ij} = 0$ if $i \neq j$ and the vertices i and j are not adjacent, and $A_{ii} = \deg(i)$.

Exercise 5.10. For a graph G, let L_G denote the graph Laplacian matrix. Prove that for all v,
\[\langle v, L_G v \rangle = \sum_{i,j \in E} (v_i - v_j)^2. \]

Exercise 5.11. Prove that if $\lambda_1, \ldots, \lambda_n$ are eigenvalues of L_G, then $0 \leq \lambda_1 \leq \ldots \leq \lambda_n$.

Exercise 5.12. Prove that the multiplicity of the eigenvalue 0 of L_G is equal to the number of connected components of G.

Exercise 5.13. Compute eigenvalues and eigenvectors of the adjacency matrix A_G and the Laplacian matrix L_G for the following graphs:

(a) K_n, the complete graph on n vertices

(b) C_n, the cycle of length n.

2