Day 1
Monday, June 19, 2017 9:30 AM
Solutions - elegant, cavity
\rightarrow define things you use \rightarrow quantifiers
"Discovering Linear Algebra" - DLA
"Do" exercise - do it, do not hard in.
\rightarrow collaborate if you don't understed
"HL" \rightarrow due at beghning of next classtron in.

Challenge -
Puzzle - AH-HA! \rightarrow send notification if worthy Reward ${ }^{\text {P }}$ on these.

- Self -grading

Linear Algebra + Combinatorics + (Graph Theory)
Deck of cards - what does it men to shuffle?
7 times to be "shuffled"?
52! possible arranogments.

"stuffing" - jumping from deck to deck
states of system - 52 ! of them.
transition probability - (1) \rightarrow (2) is P_{12} no charge in probability instates as \# of moves inoceres, all states become approx. equally they.

$$
T=\left(P_{i j}\right)_{N \times N} \quad(N=521)
$$

$T^{2}=\ldots \quad(2 \cdot$ step transition probability)

Finite Markov Choirs.
we cont do this empirically (too large...) need theory.
\rightarrow Matrices - linear algebra
\rightarrow Directed graph - combinatorize.
Largest eigenvalue of transition matix - 1

$$
G=(V, E)
$$

Graph

$$
G=(V, E)
$$

$V=$ set of vertices (nodes)
$E=$ set of edges (links)
$i \sim j \rightarrow$ adjacency relation
ix k (not adjacent)
Adjacency matrix $V=[n]=\{1, \ldots, n\}$
$n \times n \quad$ matrix
$A_{G}=\left(a_{i j}\right)$ she $a_{i j}= \begin{cases}1 & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}$
$i \not x i$ (nat reflexive)
$i \sim j$ symmetioc
not transitive
All diagonal events are $0 .\left(a_{i i}=0\right)$ A_{G} is symmetire matin $\left(a_{i j}=a_{j i}\right)$
degree $\operatorname{deg}(i)=\#$ neighbors of i.

$$
\begin{aligned}
& \operatorname{deg}(j)=5 \\
& \operatorname{deg}(i)=3
\end{aligned}
$$

$$
\operatorname{deg}(1)=3
$$

Handshake Theorem

$$
\begin{aligned}
& m=|E| \quad(\# \text { edges }) \\
& n=|V| \quad(\# \text { vertices })
\end{aligned}
$$

$$
\sum_{i \in V} \operatorname{deg}(i)=2 m
$$

(each "handshake" counted mire)

$$
n=13
$$

\rightarrow total degree \#

$$
(\forall i)(\operatorname{deg} i=5) ?
$$ is odd - nat possible

Complete Graph $K_{n} \quad m=\frac{n(n-1)}{2}=\binom{n}{2}$

$$
\binom{n}{3}=\frac{n!}{(n-3)!3!}=\frac{n(n-1)(n-2)}{6}
$$

Complement \bar{G} of $G=(v, E)$
has $\bar{G}=\left(V, \left.\binom{v}{2} \right\rvert\, E\right)$
s - set $\binom{s}{2}$-set of parks of dereats of s.
Cyde of length $n\left(\begin{array}{c}(\geq 3\end{array}\right)-\quad\left|\binom{s}{2}\right|=\binom{1 s 1}{2}$

Cyde of length $n 1=$
c_{n}

order $=$ cordihalily

$$
E\left(k_{n}\right)=\binom{v}{2}
$$

(sef-loop)

Path of length $n-1=P_{n}$ (subscript \# of vertices in path)

P_{4}

Isomaphisms

$$
G=(V, E) \quad H=(W, F)
$$

$f: V \rightarrow w$ bijection $\underbrace{\text { isomorphism. }}$
s.t preserves adjacency. ?

$$
(\forall i, j \in V)\left(i \sim_{G} j \Leftrightarrow f(i) \sim_{H} f(j)\right)
$$

$G \cong H$ isomorphic if \exists isomorphism

$$
f: G \rightarrow H
$$

Graph Isomorphism Problem
How can we tell whether two graphs are isomorphic?

Petersen's Graph

Regular
G is regular of deere k if every vertex has degree k.

Two graphs that have save \# af vertices and edges - not isomorphic.
$\longrightarrow \quad$ (smallest)
Connected - able to get to anywhere

(mhimally - connected
graphs - remove any edge \rightarrow becomes disconnected)

Subgraph

$$
H=(W, F) \subseteq G=(V, E)
$$

if $\quad W \subseteq V$
$F \subseteq E$
G is connected if \exists path between every part of vertices.
G is a tree if
(a) corrected
(b) no subgraph cydes.

(DO) Find all trees with 6 vertices.
(HW) Same with 7 vertices. State \# of non- isomorphic trees.

Self-complemetoy: $G \cong \bar{G}$.
P_{4}
C_{5}

HW) If $G \cong \bar{G}$ then $n \equiv 0$ or $1 \bmod 4$ $a \equiv b \bmod m$
" a is congruent to b modulo m "
means m/a-b
" m dives $a-b$ "
$2^{\text {nd }}$ and $23^{\text {nd }}$ fall on same dey of week

$$
\begin{aligned}
& 2^{\text {nd }} \text { and } 23^{\text {nd }} \\
& \text { b/c } 2 \equiv 23(\bmod 7)
\end{aligned}
$$

"calendar arithmetic"
DO* If $n \equiv 0$ or $1 \bmod 4$ then $\exists G$ st.

$$
\begin{equation*}
G \cong \bar{G} . \tag{1}
\end{equation*}
$$

(2)
why are \cdots an not isomorphic? degree 3 vortex in (2) bat not in (1). degree 2 vertex in (1) but net in (2). (1) has 2 degree 1 vertices bt (2) has 3 . If regular... cannot ague this wy.

one contains 3-ayde, other clues ret ore is connected other is ret
(DO) $(\forall G)(G$ or \bar{G} is connected).
G regular of degree k
\bar{G} realer of degree $n-k-1$
(Ch) All longest paths in a tree share a vertex.
(Not only paris of paths) (Paths cannot revisit vertices)
(D0) If T is a tree with ≥ 2 vertices \exists vertex of degree 1
(DO) Use previous result to prove $m=n-1$ for a tree
(DO) T is a tree ifs

$$
(\forall i, j \in V) \underset{\substack{\text { unique }}}{(\exists!i \cdots j \text { path })}
$$

(DO) The follouing oe equivalut for a groph G :
(1) G is a tree
(2) G is connected ad $m=n-1$
(3) G is cyde-free and $m=n-1$

Def. $H \subseteq G \quad H$ is a spanning subgroph

$$
H=(w, F) \quad \text { if } w=v
$$

$$
G=(V, E)
$$

(DO) G has a sparning tree iff G is conrected

Back to Petersen's groph...

HW Are these isomaphic?
R:nortite greph

Bipartite greph
$V=V_{1} \cup V_{2}$ (disjoint)
s.t all edges go between the two parts

(all intersedies nodes)

$$
\begin{aligned}
& k \times l \text { gidd } \\
& \operatorname{Grid}(k, l)
\end{aligned}
$$

DO

$$
n=k l
$$

$$
m=?
$$

Biportite?
\rightarrow cheeperbood coloring

Associale groph in possible moves of kright

- biportite as vell.
is maves - connat end p on sare space (differat coder)

DO G is biportite $\Leftrightarrow G$ has no odd oyde

$K_{r i s}$: complete bipartite groph

$$
\begin{aligned}
& n=r+s \\
& m=r s
\end{aligned}
$$

(connect eveything)

$$
\begin{aligned}
& n=r+s \\
& n \leq r s
\end{aligned}
$$

(connect eventing)

Max \# edges of bipartite graph if n vertices?

$$
\begin{array}{ll}
\max \{r(n-r) \mid & 0 \leq r \leq n\} \\
= & \begin{cases}n^{2} / 4 & \text { it } n \text { ave } \\
\frac{(n-1)}{2} \cdot \frac{(n+1)}{2} & \text { if } n \text { odd } \\
=\frac{n^{2}-1}{4} & \lfloor 5.3]=5\end{cases} \\
=\left\lfloor\frac{n^{2}}{4}\right\rfloor & \lfloor-5.3\rfloor=-6 \\
\rightarrow & \lfloor\pi\rfloor=3 \\
\text { floor } & \lfloor 10\rfloor=10
\end{array}
$$

$C_{5} \rightarrow$ not bipartite yet has no C_{3} What is the max \# of edges of a triangle - free graph?
HW due wednesday:
If $G \not \not \neq C_{3}$ (triangl e-free)
then $\quad M \leq \frac{n^{2}}{4}$
(CH If $G \nsupseteq C_{4}$, then \exists constant C st
(CH If $G \nsupseteq C_{4}$, , ,

$$
m<\mathrm{Cn}^{3 / 2}
$$

(CH) This bound is tight. (with another C, for all sufficiently large n)

Determinants

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{2}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

$$
\begin{gathered}
a_{11} x_{1}+\ldots+a_{13} x_{3}=b_{1} \\
\vdots \\
a_{31} x_{1}+\ldots+a_{33} x_{3}=b_{3} \\
2=2! \\
6=3! \\
24=4!
\end{gathered}
$$

$$
x_{1}=\underbrace{\frac{b_{1} a_{12}-b_{2} a_{12}}{a_{11} a_{22}-a_{12} a_{21}}}_{\text {determinate }}
$$

$$
\begin{aligned}
& x_{1}=\frac{\cdots}{a_{11} a_{22} a_{33}+} \\
& a_{12} a_{23} a_{31}+ \\
& a_{13} a_{21} a_{32}- \\
& a_{11} a_{23} a_{22}- \\
& a_{22} a_{13} a_{31}- \\
& a_{33} a_{12} a_{21}
\end{aligned}
$$

x	x	
	x	x
x	x	x

from carey row and ency column

	R			
R				

n! rook arrangements.

n: roor … σ
det $A=\sum \pm a_{11} \sigma a_{22} \sigma \cdots a_{n 1} \sigma$

$$
\sigma \in \operatorname{Perm}_{n}
$$

exporsion terms ($n!$)
$\sigma:[n] \rightarrow[n]$

$$
\sigma(2)=2^{\sigma}
$$

permutation
(bijection of $[n]$
to itself)

$$
\begin{array}{lll}
& (123)= & \\
a_{12} a_{23} a_{31} & a_{23} a_{32} \\
(231)=(312) & a_{11} a_{23} \\
1 \rightarrow 2 & 1 \rightarrow 1 \\
2 \rightarrow 3 & r_{3}^{2} & 3 \rightarrow 2
\end{array}
$$

$$
(23)=(32)
$$

$$
\underset{\substack{1 \rightarrow 2 \\ 2 \rightarrow 3}}{\substack{1 \\ 3 \rightarrow 2}}
$$

permutations

$$
\begin{aligned}
& \sigma, \tau \in \underbrace{\operatorname{Perm}}, \\
& i
\end{aligned} i^{(\sigma \tau)}=\left(i^{\sigma}\right)^{\tau}
$$

signa tow (symurewic (perform σ fist, thas τ)

$$
\begin{aligned}
& A=\left(a_{i j}\right)_{n \times n} \\
& =\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{21} & \cdots & a_{2 n} \\
1 & \vdots & \ddots & 1 \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \\
& \operatorname{det}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}
\end{aligned}
$$

sigma tow (symmetric (perform σ first, iv. 2 . compositions.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \ldots(n-1+k)}{k!}\binom{n}{k} \cdot(k-1)!
$$

(DO) Every permutation. is a unique product
up to ordering
of disjoint oydes.
identity permutation

Deft transposition:

(DO) transpositions generate the extine symuntive group
$1 \ldots n$
(i, i+1) - neighbor swap
(DO) Neighbor swaps generate the entire symmetric group.
. - how long does it take to get .ain. transpositions?
from ore state to another vary
(DO) How mary stops do re need to generate the entire symmetric group?
In at most $n-1$ steps. (standard)

In order of n^{2}
$\Omega\left(n^{2}\right) \rightarrow C_{n}^{2}$ is necessary. $\underset{\rightarrow}{ }$ proof. (example)
(Neighbor swaps.) (more complicated..)
DO* Product of even \# of transpositions \neq product of add \# of transpositions.

Deft. σ is even if product of even \# of transpositions odd othernie
(DO) For $n \geq 2$, \# even perm. $\#$ odd per

$$
\operatorname{sign}(\sigma)=\left\{\begin{array}{rll}
+ & \text { if } & \sigma \text { even } \\
- & \text { if } & \sigma \text { odd }
\end{array}\right.
$$

"HW" Study" Ch. 6 in DLA ("Determinant")

* solve the exercises as well

