3 Do exeraies

Eigenvectors corresponding to disthet eigenvalues are linearly independent
λ_{1} and λ_{2} are distinct eigenvalues.
$\alpha_{i} \in \mathbb{R}$
$\alpha_{1} N_{1}+\alpha_{2} N_{2}=0$

$$
\lambda_{1} \alpha_{1} v_{1}+\lambda_{2} \alpha_{2} v_{2}=0
$$

$$
\lambda_{1} \alpha_{1} \nu_{1}+\lambda_{1} \alpha_{2} v_{2}=0
$$

$$
0+\underbrace{\left(\lambda_{2}-\lambda_{1}\right.}_{0} \int_{0} \int_{0}^{\alpha_{2} v_{2}}=0
$$

Con do same for λ_{2} to get

$$
\alpha_{1}=0
$$

\therefore lin. indef

Induct

$$
\begin{aligned}
& \text { Monday, lIne 26,2017 } \left.\begin{array}{rl}
0: 43 A M \\
& =\lambda \underline{x} \Rightarrow A(A x)=A(\lambda x)=\lambda(A x)=\lambda^{2} x \\
A^{n} \underline{x} & =A\left(A^{n-1} \underline{x}\right) \\
& =A\left(\lambda^{n-1} x\right)
\end{array}\right)=\lambda^{n-1}(A x) \\
&
\end{aligned}
$$

$$
\begin{aligned}
f(A) & =a_{0} I+a_{1} A+\cdots+a_{n} A^{n} \\
f(\lambda) & =a_{0}+a_{1} \lambda+\cdots+a_{n} \lambda^{n} \\
f(A) \cdot x & =\left(a_{0} I+a_{1} A+\cdots+a_{n} A^{n}\right) x \\
& =a_{0} I x+a_{1} A x+\cdots+a_{n} A^{n} x \\
& =a_{0} x+a_{1} \lambda x+\cdots+a_{n} \lambda^{n} x \\
& =\left(a_{0}+a_{1} \lambda+\cdots+a_{n} \lambda^{n}\right) x \\
& =f(\lambda) x
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr}(A B)=\operatorname{Tr}(B A) \\
& \operatorname{Tr}(A B) \\
& A \in \mathbb{R}^{k \times l} \quad B \in \mathbb{R}^{l \times k} \\
& A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 \ell} \\
\vdots & & \vdots \\
a_{k 1} & & \cdots \\
a_{k l} l
\end{array}\right) \\
& B=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 k} \\
\vdots & \cdots & \vdots \\
b_{e 1} & \cdots & b_{e k}
\end{array}\right) \\
& \operatorname{Tr}(B A)=
\end{aligned}
$$

$$
\begin{aligned}
& T-(A B)=\operatorname{Tr}(B A) \\
& \text { symuctire }
\end{aligned}
$$

$$
f_{A}(t) \cdots
$$

(a) is monic

$$
\begin{aligned}
& \text { (b) } \alpha_{n-1}=-\operatorname{Tr}(A) \quad t^{n-1} \\
& \operatorname{det}(t I-A)=\left(\begin{array}{ccc}
t-a_{1} & -a_{i j} & \\
t-a_{22} & { }^{t} & \\
-a_{i j} & & t-a_{n n}
\end{array}\right) \\
& =\prod_{i=1}^{n}\left(t-a_{i i}\right)=\left(t-a_{11}\right)\left(t-a_{22}\right) \cdots\left(t-a_{n n}\right) \\
& \rightarrow \quad-a_{11} t^{n-1}-a_{22} t^{n-1} \cdots \\
& \Rightarrow-\underbrace{\left(\sum_{i=1}^{n} a_{i v}\right) t^{n-1}}_{T(A)}
\end{aligned}
$$

other temas of the detenineat don't matter - will concel oet $2 t$ tems using cofactors so at most cen hame t^{n-2} factor
(c) $\operatorname{det}(t I-A)$

$$
\begin{aligned}
& \operatorname{det}(t I-A) \\
& \operatorname{det}(-A)=\alpha_{0}=(-1)^{n} \operatorname{det}(A) \quad \text { (form class) }
\end{aligned}
$$

Show $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has no eigenbasis.
Upper triongler $\rightarrow \lambda=1$.

$$
\begin{array}{rl}
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}= & \binom{x}{y} \\
x+y=x \\
y=0 & y=y \\
y & =(t, 0) \quad \forall t \in \mathbb{R} \text { are } \\
& \begin{array}{l}
\text { eigenvectors }
\end{array}
\end{array}
$$

Al in dep. \rightarrow carnet form a basis.

$$
\begin{aligned}
& \mathbb{R}^{n}-\operatorname{dim}=n \\
& x_{1}, \ldots, x_{k},+x_{k+1}
\end{aligned}
$$

adding linealy independent
$\left\{x_{1}, \ldots, x_{n}\right\}$ lin. indep \rightarrow masoind lin indoperdunt

$$
x_{i}=\sum_{j} x_{i j} e_{j}
$$

$$
a=a_{1} e_{1}+\ldots+a_{n} e_{n}
$$

Fivst Miracle.

$$
|B|=n
$$

nxn triorgalor matix.
1 distinet eigervatues (diagonal dereats)
n lin. indep eigenvectors (HW S)
From corolley, inn indep. rectors fom a basis.
\rightarrow eigenbasis.

$$
f(t)=\prod_{i=1}^{k}\left(t-\alpha_{i}\right) \quad g_{j}(t)=\frac{f(t)}{\left(t-\alpha_{j}\right)}
$$

Suppose lin dep.

$$
\begin{aligned}
g_{i}=\sum_{\substack{j=1 \\
j \neq i}}^{k} \mu_{j} g_{j} & \\
f(t) & =g_{j}\left(t-a_{1}\right) \\
& \left.=\left(t-a_{1}\right) \sum_{j=2}^{k} \mu_{j} g_{2}\right) \frac{f(t)}{t-\alpha_{j}} \\
& =f(t) \sum_{j=1}^{k} \mu_{j}\left(\frac{t-a_{i}}{t-a_{j}}\right)
\end{aligned}
$$

$$
\sum \beta_{i} g_{i}(t)=0 \quad t=\alpha_{1}: \beta_{1} g_{1}(t)+\cdots+\beta_{A} g_{n}(t)
$$

$$
\left.\begin{array}{rl}
f(t)=\pi(t-\alpha r) & \forall i \in[n], i \neq 1 \\
q_{i}(\alpha)
\end{array}\right)=0
$$

$$
\begin{array}{ll}
f(t)=\pi\left(t-\alpha_{1}\right) & \forall i \in[n], i \neq 1 \\
g_{i}(t)=\frac{f(t)}{t-\alpha_{i}} & g_{i}\left(\alpha_{1}\right)=0 \quad\left(h a s \alpha_{1}-\alpha_{1}\right) \\
& \beta_{1} g_{1}\left(\alpha_{1}\right)=0
\end{array}
$$

$$
\beta_{1} \underbrace{\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right) \cdots\left(\alpha_{1}-\sigma_{n}\right)}_{\alpha_{n}}=0
$$

All α_{n} distivat, so $\beta_{1}=0$. Repeat $\forall \beta_{n}$
$\mathbb{R}^{\mathbb{N}}=$ space of infinite sequences

$$
\begin{aligned}
& S: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \\
& \left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right) \longmapsto\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)
\end{aligned}
$$

Find all eigenvalues and corresponding eigenvectors.

$$
\begin{aligned}
& \alpha_{0}^{\prime}=\left(\alpha_{0}^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots\right) \\
& S \alpha_{0}^{\prime}=\left(\lambda \alpha_{0}^{\prime}, \lambda \alpha_{1}^{\prime}, \lambda \alpha_{2}^{\prime}, \ldots\right)=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \ldots\right) \\
& \lambda \alpha_{0}^{\prime}=\alpha_{1}^{\prime} \quad\left(\alpha_{0}^{\prime}, \lambda \alpha_{0}^{\prime}, \lambda^{2} \alpha_{0}^{\prime}, . .\right) \\
& \lambda \alpha_{1}^{\prime}=\alpha_{2}^{\prime} \quad(\forall \lambda)\left(\forall \alpha_{0}^{\prime}\right)
\end{aligned}
$$

$(\lambda$ is on eigenvalue with eigenvector

$$
\begin{aligned}
& \text { gerreator } \\
& \left.\left(\alpha_{0}^{\prime}, \lambda \alpha_{0}^{\prime}, \lambda^{2} \alpha_{0}^{\prime}, m\right)\right)
\end{aligned}
$$

Homework for wednesday
Def. Let G be a graph, and let $t \in \mathbb{N}$.
$f_{G}(t)=\#$ of legal colorings with t colors is called the
chromatic polynomial. \rightarrow (Tomorrow' prove this is $(V \rightarrow[t])$

HW Lat T be a tree with n vertices.
show that $f_{T}(t)=t(t-n-1$
this is independent of the choice of tree.

CH $f_{e_{n}}(t)=$?
HW Nonzero pairwise orthogonal vectors are lively independent orthogonal: dot product is 0 .
(1) $f_{k_{n}-}(t)$ (emply graph) t^{n} (choose I
(2) $f_{k_{n}}(t)$ (complete graph) color from t

$$
\begin{aligned}
& \text { (2) } f_{k n}(t) \text { (complete graph 1 } \\
& \prod_{t-2}^{t-4} \quad t(t-1)(t-2) \ldots(t-4) \quad \text { for each of } \\
& n \text { vertices) } \\
& \prod_{i=0}^{n-1}(t-i)=\frac{t 1}{(t-n)!}={ }_{t} P_{n} \text {. (if } t \geq n \text { d } 0 \text { dents) }
\end{aligned}
$$

$$
\alpha(G \circ H) \geq \alpha(G) \alpha(H) \xrightarrow{k \times l}{ }^{\text {Monday, Ane 26,2017 }}, ~ \text { of } G
$$

Let A_{G} be independent set st $\left|A_{G}\right|=\alpha(G)$ and A_{H} be independent set of H s.L

$$
\left|A_{H}\right|=\alpha(H)
$$

wis, $A_{G} \square A_{H}$ is indeperont set
If $g \in A_{G}, \quad \forall h \in A_{H}$
$\left(g_{1}, h_{1}\right),\left(g_{1}, h_{2}\right), \ldots,\left(g_{1}, h_{e}\right)$ most be nonadj. since
h_{1}, h_{2}, \ldots, he ran. od j
we an reason this way for $\forall g \in A_{G}$
$\therefore \alpha(G \nabla H)$ must ho re at least $k \times l$ pts. $\alpha(G) \alpha(H)$.
$\alpha\left(C_{s} \square C_{s}\right)$
≤ 2 per column + row (cant add more b/c $C_{5} \mathrm{~s}$.)

$$
\alpha \leq 2.5=10
$$

OO OO
00000
(o) © 0

$$
00000
$$

$$
\because 0 \theta \sigma \theta
$$

$$
\alpha(G) \times(G) \geq n
$$

Using colors - sepoate G into independent sets.

$$
n=\sum_{j=1}^{x(G)}\left|v_{j}\right| \quad\left|v_{j}\right| \leq \alpha(G)
$$

If $k l$ even, then $k \times l$ gird is Hamiltonian.
Exception: $1 \times n$ (n is even) $k \neq 1, l \neq 1$.
If k, l odd, then $k \times l$ gird nat

Hammitorias
$k \times l$ grid is bipartite. Assume $k \times l$ gid is Hamithorian. Then $k x l$ gird has a cyde of add length ($k l$ is odd). Contradiction biportise graphs carrot hove odd cydes. $\therefore k \times l$ grid is not Hamiltonian

Find the smallest connected bipartite graph wt no perfat matching. (equal pats)
G biotite with equal pots. $\operatorname{det}\left(B_{C}\right) \neq 0 \Rightarrow \exists$ a perfect matching, $\operatorname{det}\left(B_{G}\right) \neq 0 \rightarrow$ thee exists a rook arrongeneat permutation s.t product is nonzero. This corresponds to a perfect matching (since all lis - edges and disjoint). A b \exists ter in

$$
\begin{aligned}
& \exists \text { term in } \\
& \text { som that } \\
& \text { is nonzero. } \\
& B \sum \operatorname{sgn}(\sigma) a_{11} \sigma a_{22} \ldots a_{n n} \sigma
\end{aligned}
$$

Disprove \exists protect matting $\Rightarrow \operatorname{det}\left(B_{G}\right) \neq 0$.

$$
k_{2,2}
$$

$$
\sum \operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=0
$$

