Abstract vector spaces is something you can perform linear combinations on.

e.g., functions $\mathbb{R} \to \mathbb{R}$

$$\left\{ f : \mathbb{R} \to \mathbb{R} \right\} = \mathbb{R}^\infty$$

Subspace: $\mathcal{V} = [n] = \{1, \ldots, n\}$

$$\mathbb{R}^n = \mathbb{R}^n$$

$$\begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{pmatrix} =
\begin{pmatrix}
\alpha(1) \\
\vdots \\
\alpha(n)
\end{pmatrix}$$

$\mathbb{R}[t] = \text{polynomials over } \mathbb{R}$

$\mathbb{R}^\infty = \text{infinite sequences of real numbers}$

$$(a_0, a_1, \ldots)$$

$$(a(0), a(1), \ldots)$$ alternative function notation.
\mathbb{R} "scalars"

V vector space - elements of V are "vectors".

Axioms

- $\forall (V, +)$ is a binary operation on V: $+: V \times V \to V$

1. $(V, +)$ is an abelian group.

 (a) $(\forall a, b \in V) (\exists! c \in V \text{ called } c = a + b)$ (addition is defined)

 (b) $(a + b) + c = a + (b + c)$ (addition is associative)

 (c) $(\exists 0)(a + 0 = 0 + a = a)$ (additive identity exists)

 (d) $(\forall a \in V)(\exists b)(a + b = b + a = 0)$ (additive inverse exists) notation: $b = -a$

 (e) $(\forall a, b \in V)(a + b = b + a)$ (addition is commutative)
2. **Multiplication by Scalars**

\[\mathbb{R} \times \mathbb{V} \rightarrow \mathbb{V} \]

\[(\lambda, a) \rightarrow \lambda a \]

(a) \((\forall \lambda \in \mathbb{R})(\forall a \in \mathbb{V})(\exists! \ b \in \mathbb{V} \text{ called } b = \lambda a)\)

(scalar multiplication is defined)

(b) \((\forall \lambda, \mu \in \mathbb{R})(\forall a \in \mathbb{V})(\lambda(\mu a) = (\lambda \mu) a)\)

(mixed associativity)

(c) \((\forall \lambda, \mu \in \mathbb{R})(\forall a \in \mathbb{V})(\lambda(a + \mu) = \lambda a + \lambda \mu)\)

(mixed distributivity - scalars)

(d) \((\forall \lambda \in \mathbb{R})(\forall a, b \in \mathbb{V})(\lambda(a + b) = \lambda a + \lambda b)\)

(distributivity - vectors)

3. \(1 \cdot a = a\) (rules out mapping everything to 0)

(axiom of normalization)
Cor. \((\forall x \in \mathbb{R})(\forall a \in V)(\lambda a = 0 \iff \lambda = 0 \land a = 0)\)

Proof:

(1) \(\lambda = 0 \Rightarrow \lambda a = 0\)

\(0 + 0 = 0\)

\((0 + 0)a = 0 \cdot a\) \hspace{1cm} (Multiply by \(a\))

\(0 \cdot a + 0 \cdot a = 0 \cdot a = f\) \hspace{1cm} (Axiom 2c)

\(f + f = f\)

DC: \(f = 0\).

\(f + f + (-f) = f + (-f)\) \hspace{1cm} (Axiom 1d - add \(-f\))

\(f = f + 0 = f + (f + (-f)) = (f + (f)) = 0\) \hspace{1cm} (Axioms 1b, 1c)

\(f = 0\)

\(\bigcirc\) If \(a = 0\) then \(\lambda a = 0\). (pot 2)
(3) If $\lambda \neq 0$ and $a \neq 0$ then $\lambda a \neq 0$.

\[
\frac{1}{\lambda} (\lambda a) = (\frac{1}{\lambda} \cdot \lambda) a = 1 \cdot a = a
\]

If $\lambda a = 0$

then $a = \frac{1}{\lambda} (\lambda a) = \frac{1}{\lambda} \cdot 0 = 0$ by (2)

so $a = 0$ (contradiction $\rightarrow a \neq 0$).

($\frac{1}{\lambda}$ exists b/c $\lambda \neq 0$).

Linear combination of $a_1, \ldots, a_k \in V$:

\[
\sum_{i=1}^{k} \alpha_i a_i \quad \text{where } \alpha_i \in \mathbb{R},
\]

trivial l.c. - all $\alpha_i = 0$.

The list a_1, \ldots, a_k is linearly independent

if only the trivial l.c. evaluates to 0.

if $S \subseteq V$ $\text{Span}(S) = \{ \text{all l.c. of finite subsets of } S \}$
Subspace: A vector space $W \subseteq V$ that is a vector space under the same operations.

All properties with universal quantifiers for operations in V will be inherited by any subset of the space with the same operations.

Thm. $W \subseteq V$ is a subspace \iff

1. $0 \in W$.

2. If $a, b \in W$, then $a + b \in W$.

3. If $a \in W$, $\lambda \in \mathbb{F}$ then $\lambda a \in W$.

Do Span of any subset of V is a subspace.

Note empty set is not a subspace.

Axiom 1c \Rightarrow vector space is nonempty.
In particular, \(\text{Ov} = \text{Ov} \).

\[\text{span(}\text{span}(S)) = \text{span}(S) \]

\text{Span} is an \underline{idempotent operator} - doing it twice is the same as doing it once (e.g. - projection for transformations.)

An \underline{involution} is when doing it twice is the same as doing nothing:

(Identity) \(\Rightarrow f(f(x)) = I(x) \).

\text{Rank} of a list \(L \) of vectors:

\[\text{rk}(L) = \max \# \text{ of lin. independent vectors in } L. \]

\(\text{if no finite max, } \text{rank} = \infty \)

\text{Def. dim } V = \text{rk}(V).
Def. A basis of V is a list L s.t.
(1) L is lin. independent
(2) $\text{Span}(L) = V$

Every linearly independent list of vectors is a basis of its span.

Thm. L is a basis \iff L is a maximal lin. independent list.

(A)

Lemma. If v_1, \ldots, v_k are lin. indep. and $v_{k+1}, v_{k+2}, \ldots, v_k$ are lin. independent,
then $v_{k+1} \in \text{Span}(v_1, \ldots, v_k)$.

Proof. $(B) \Rightarrow \exists \alpha_1, \ldots, \alpha_k, \alpha_{k+1}$ not all zero

\[\sum_{i=1}^{k+1} \alpha_i v_i = 0 \]

If $\alpha_{k+1} \neq 0$ then $v_{k+1} \in \text{Span}(v_1, \ldots, v_k)$ (move to other side, divide by α_{k+1}).
So \(NTS: \alpha_{k+1} \neq 0 \).

Suppose \(\alpha_{k+1} = 0 \).

But then \(\sum_{i=1}^{k} \alpha_i v_i = 0 \) and not all of \(\alpha_1, \ldots, \alpha_k = 0 \) \(\implies \) contradiction (as \(v_1, \ldots, v_k \) are lin. indep.)

Proof of Thm.

basis \(\subseteq \) maximal lin. indep. list

(1) \(\implies \) Suppose \(v_1, \ldots, v_k \) basis

\(NTS: (\forall w \in V) (v_1, \ldots, v_k, w \text{ is lin. dep.}) \)

Since \(v_1, \ldots, v_k \) is basis,

\(\text{span} (v_1, \ldots, v_k) = V \), so

\(w \in \text{span} (v_1, \ldots, v_k) \) and

\(w \in \text{span} (v_1, \ldots, v_k) \implies w \text{ is lin. dependent} \)

\(\therefore v_1, \ldots, v_k \) maximal.
(2) Suppose \(v_1, \ldots, v_k \) is a maximal lin. indep. set.

\[\text{NTS: } \text{Span}(v_1, \ldots, v_k) \subseteq V \]

i.e., \(\text{NTS: } (\forall w \in V), \ w \in \text{Span}(v_1, \ldots, v_k) \).

By maximality, \(v_1, \ldots, v_k \) are lin. independent,

so by lemma, \(w \in \text{Span}(v_1, \ldots, v_k) \).

Thus \(v_1, \ldots, v_k \) is a basis.

Note: \(V \) is finite dimensional if all lin. indep. sets have bounded size, i.e.

\[(\exists n_0)(\forall \text{ lin. indep. set})(|S| \leq n_0) \]

Thm. In a finite-dimensional space, every linearly independent list can be extended to a basis.

Cor. In a finite-dimensional space, \(\exists \) a basis.

Proof. Extend the empty list.
“Mathematics is about understanding the empty set”.

(Fermat’s Last Theorem)

Fermat’s Last Tango — musical

Isomorphism of Vector Spaces

\[f: \mathcal{V} \rightarrow \mathcal{W} \text{ bijection } \iff \]

1. \((\forall a, b \in \mathcal{V})(f(a + v_b) = f(a) + f(v_b))\)
2. \((\forall a \in \mathcal{V})(\forall \alpha \in \mathbb{R})(f(\alpha \cdot a) = \alpha \cdot f(a))\)

00 If \(f \) is an isomorphism \(\mathcal{V} \rightarrow \mathcal{W} \) then

\(f \) is an isomorphism \(\mathcal{W} \rightarrow \mathcal{V} \).

\(f^{-1} \) is an isomorphism \(\mathcal{W} \rightarrow \mathcal{V} \).

\(\mathcal{V} \) is isomorphic to \(\mathcal{W} \) \((\mathcal{V} \cong \mathcal{W}) \) if

\(\exists f: \mathcal{V} \rightarrow \mathcal{W} \text{ s.t. } f \text{ is isomorphism.} \)

Thm. \(\mathcal{V} \) is a basis of \(\mathcal{V} \) \(\iff \)

\[(\forall w \in \mathcal{V})(\exists ! \alpha_1, \ldots, \alpha_k \in \mathbb{R})(w = \sum \alpha_i v_i) \]

coordinates of \(w \) w.r.t. the basis \(v_1, \ldots, v_k \).

(with respect to)
So \(B \) defines a map \(f: V \to \mathbb{R}^k \) coordination of \(V \)

\[
f(w) = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_k \end{bmatrix} \\
\left. \frac{\mathbf{w}}{} \right|_B
\]

\[
G_2 : \quad v_2 \quad w = 1.1v_1 + 3v_2 \\
\left. \frac{\mathbf{w}}{} \right|_B = \begin{bmatrix} 1.1 \\ 3 \end{bmatrix}
\]

\(B = (v_1, v_2) \)

DO \(\mathbf{w} \mapsto [\mathbf{w}]_B \) is an isomorphism.

Cor. If \(V \) has a basis consisting of \(k \) vectors then \(V \cong \mathbb{R}^k \).

First Miracle of Linear Algebra

If \(v_1, \ldots, v_k \) are linearly independent and all \(v_i \in \text{Span}(v_1, \ldots, v_k) \) then \(k \leq 2 \).

"impossibility of boosting linear independence"
Cor. If B_1, B_2 are bases of V then

$$|B_1| = |B_2|.$$ (i.e. maximal lin. indep. set is the maximum.)

Proof. Let B_2 be the w_i and B_1 be the v_j. By First Miracle, $|B_2| \leq |B_1|$, by symmetry, $|B_1| \leq |B_2|$ and thus $|B_1| = |B_2|$.

Back to extending lists for a second.

Then. In a finite dimensional space, every linearly independent list can be extended to a basis.

Finite dimensional - bounded # of lin. independent vectors.

Can always add more vectors that are lin. independent if not maximal - must stop at bounded \Rightarrow maximal \Rightarrow basis.
we actually don't need finite dimensionality.

Thm. Every vector space has a basis.

Proof. Use Zorn's Lemma.

REWARD PROBLEM

\[f : \mathbb{R} \to \mathbb{R} \]

Cauchy's functional equation is satisfied:

\[f(x + y) = f(x) + f(y) \]

(e.g., \(f(x) = c \cdot x \))

\[f(x) = c \cdot x \]

(a) If \(f \) is continuous, then \(f \) is linear.

(b) If \(f \) is continuous at a point, then \(f \) is linear.

(c) If \(f \) is bounded on some interval, then \(f \) is linear.

\[(c) \Rightarrow (b) \Rightarrow (a) \]
(d) If f is measurable then f is linear.
(e) I nonlinear solution.

(2) can be used for coefficients.

Prove: \(1, \sqrt{2}, \sqrt{3}\) are linearly independent over \(\mathbb{Q}\) (rationals).

i.e. if \(\alpha, \beta, \gamma \in \mathbb{Q}\) and \(\alpha(1) + \beta(\sqrt{2}) + \gamma(\sqrt{3}) = 0\),

then \(\alpha = \beta = \gamma = 0\).

\(\mathbb{R}\) is a vector space over \(\mathbb{Q}\).

HW connection:

For 2 pts., justify why the triangle-free graph with 11 vertices and 5-fold rotational symmetry is not 3-colorable.

Be sure to check grader's comments and take to friends \(\Rightarrow\) go to OH \(\Rightarrow\) speak to Prof.

Babai if something doesn't seem right.
From DLA:
15.1.11 (a)(b)
15.1.12
15.2.6 (a) - (c) Prove only "No" answers.

DO
15.3.11, 15.3.12, 15.3.22

First Miracle of Linear Algebra

Lemma. (Steinitz Exchange Principle)

Under conditions of First Miracle,
\((\forall i) (\exists j) (v_i, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k, w_j \in \text{indep.})\)

\(v_i \leftrightarrow w_j \quad \text{sharpen}\)

(Terminology: if \(S \subseteq V\) spans \(V\) then \(S\) is a set of \underline{generators}.)

Proof. Suppose \(w_j\) doesn't work. Then
\(v_i, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k, w_j \begin{array}{c} \text{in} \vphantom{\|} \text{indep.} \end{array}, \quad \text{but} \quad w_j \in \text{span}(v_i, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k)
\)

\(w_j \in \text{indep.}, \quad \text{so} \quad w_j \in \text{span}(v_i, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k).
\)

by previous lemma.
If none of the v_j work, then

$$w_1, \ldots, w_{k-1}, v_i, \ldots, w_k \in \text{Span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k)$$

but $v_i \in \text{Span}(w_1, \ldots, w_k)$ and

$$\text{Span}(w_1, \ldots, w_k) \subseteq \text{Span}(\text{Span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k))$$

$$\therefore v_i \in \text{Span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k)$$

$$\therefore v_1, \ldots, v_k \text{ are dependent - a contradiction.}$$

Thus, at least one of v_j must work.

Proof of First Miracle

Proof that $w_1, \ldots, w_k, v_i, \ldots, w_k$ is still in $\text{Span}(w_1, \ldots, w_k)$.

Still in $\text{Span}(w_1, \ldots, w_k)$,

all v_j distinct (otherwise in dep. sublist)

in independent

$$k \leq l$$
Cor. If \(\mathbb{R}^n \cong \mathbb{R}^m \) then \(n = m \).

b/c \(\mathbb{R}^n \) has a basis of \(n \) vectors:

"standard basis" : columns of identity matrix

Do Show this is a basis.

Do If \(f : V \to W \) isomorphism, then \(f \) maps basis to basis.

Cor. \(\dim (\mathbb{R}^n) = n \).

Can find basis (n lin. indep.) and first miracle guarantees no longer

Def. \(A \in \mathbb{R}^{m \times n} \)

column rank \((A) = \) rank of list of columns

row rank \((A) = \) rank of list of rows

Second Miracle of Linear Algebra

\[
\text{col} \; \text{rk}(A) = \text{row} \; \text{rk}(A) =: \text{rk}(A) \quad \text{(rank of matrix A)}
\]
\[A = [a_1, a_2, \ldots, a_k] \quad a_i : \text{columns.} \]

The **column space** of \(A \) is \(\text{Span}(a_1, a_2, \ldots, a_k) \).

HW
\[\text{col } \text{rk}(A) = \text{dim of space}. \]

Proof: 1 line

HW
\[A, B \in \mathbb{R}^{k \times k} \implies \]
\[\text{rk}(A + B) \leq \text{rk}(A) + \text{rk}(B) \]

CH
Let \(A \) be matrix : \(A = (a_{ij}) \)
\[B := (a_{ij}^2) \]

Prove: \(\text{rk}(B) \leq \frac{\text{rk}(A)(\text{rk}(A) + 1)}{2} \)

Let \(A \in \mathbb{R}^{k \times k} \).

\(B \) is a **right inverse** of \(A \) if \(AB = I_k \)

\(B \in \mathbb{R}^{k \times k} \), so \(AB \in \mathbb{R}^{k \times k} \).

HW
A right inverse exists \(\iff \text{rk}(A) = k \).

"A has full row rank."
Commentary:

A right inverse exists $\iff r_k(A) = k$
(from second miracle) \iff rows are lin. indep.
\iff columns span \mathbb{R}^k

(Do) State analogous result for left inverse.

(HW) (for Monday) (submit via email)

Suppose we have

$A_1, \ldots, A_m, B_1, \ldots, B_m \in M_n(\mathbb{R})$

s.t. $A_i B_j = B_j A_i \iff i \neq j$.

Prove: $m \leq n^2$.

(Ask for a hint tomorrow - if you figure it out before tomorrow - email Prof. Babai)

Note: The chromatic polynomial problem is now due Mon. July 3 \Rightarrow check the website for a more detailed description.