cyclotomic

Problem	Session
roblem	

$$\times$$
 \vdash \bot

$$\chi^2 + \chi + 1$$

$$x^{2}+1$$

$$x^{2} - x + 1$$

$$\sum_{j=0}^{p-1} x^{j} \times p-1$$

p-pore

 $\deg (\gcd(f,f')) \ge 1 \iff multiple roots.$

$$deg(gcd(f, f')) \neq 0$$

$$P \mid f \quad \text{Fund. Theorem} \quad (x-\alpha) \mid f$$

$$p \mid f \quad \text{(x-\alpha)} \mid f'$$

$$(x-\alpha)$$

plf Fund. These
$$(x-\alpha)$$
 If $(x-\alpha)$ If $(x-\alpha$

Let
$$f = \rho^2 g$$

 $f' = 2pq + p^2q'$ = p(2g + pg)

plf and

plf,

P is the nuttiple root

deg (god (f. f')) = deg(p) = 1. a

1) A diagonalizable => 75,5 s.f. B = 5 AS

where B is diagonal.

SB = AS

(col rector of 5) $\Rightarrow a_{1},...,a_{n}$ are eigenvectors for A

since 5 invertibles cols, or I'm independent

A eigenbasis

$$D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix} SD = \begin{pmatrix} \lambda_1 \times_1 & \times \\ \times & \lambda_n \times_n \end{pmatrix}$$

$$S = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Week 4 - Day 1 Page 2

$$AS = (AV_1 - AV_n)$$

= $(\lambda, V_1 - \lambda V_n)$ by eigenvectors.

口

$$A = \{a_1, ..., a_n\}$$

$$A+A = \{\alpha+\alpha' \mid \alpha,\alpha' \in A\}$$

$$\sum_{i=1}^{k} i = \frac{k(k+i)}{2} = {k+1 \choose 2}.$$

Case 1:
$$\vec{v} = \vec{j}$$

Cose 2:
$$\binom{n}{2}$$
 ways to pick $\binom{n-1}{2}$

$$n+\binom{n}{2}=n+\frac{n(n-1)}{2}$$

$$= \frac{2n + n^2 - n}{2} = \frac{n^2 + n}{2} = \frac{n(nH)}{2} = \binom{n+1}{2}$$

What about in the general case?

$$a_{i_1} + a_{i_2} + \cdots + a_{i_k}$$
 can be dishort for

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$A^{N} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

[Shiff or]
$$e = \{sin + cos + 3\}$$

$$f \mapsto f(t-\alpha)$$

$$\begin{cases}
sin(t-\alpha) \\
cos(t-\alpha)
\end{cases} = \begin{cases}
sin(t)cos(\alpha) - sin(\alpha)cos(t) \\
cos(t)cos(\alpha) + sin(t)sin(\alpha)
\end{cases}$$

$$= sn(t) \left(\frac{cos(\alpha)}{sn(\alpha)} \right) + cos(t) \left(\frac{-sh(\alpha)}{cos(\alpha)} \right)$$

image
of basis

[Shft
$$\alpha$$
] = α cos α -sh α cos α)

Find a non-singular months that is

not d'aganalizable.

2. Any strictly triangular marks A

is nilpotent; ie. In 21

 $A^n = 0$.

3. Find on example for ACN,

|A| = |A|, with $|A+A| = {k+1 \choose 2}$

where He board is hight.

Lecture.

 $A \in M_1(C)$, with $x \in C$ on eigenvalue.

Is the set of all eigenvectors to 2 a

subspace?

{eigenveetors to eigenvalue } { C ?

{eigenveetors to eigenvalue } \$ Subspace ?

 $\{03 \ U \ \{elgunveetors\} = \{x \in C \mid Ax = \lambda x\}$

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

 $(\lambda I - A) \underline{x} = \underline{0}$ has nonhowal solution

 $det(\lambda I - A) = 0$ $\Leftrightarrow f_A(\lambda) = 0$ homogenous system of linear equations.

 $\{\chi \in \mathbb{C} \mid (\chi I - A) \times = 0 \}$

matrix of A.

What is the dimension?

U_X(A) is the eigensubspace of A to

eigenvalue 2. din {x | Bx = 0 } = n - 1/2 (B)

(x e Cⁿ dm Ux

rate-nullity Hm. nullip # lin, indep.

eigenvectors

to eigenvalue X.

Del: geometric numplicity of eigenvalue 2.

 $dim U_{\lambda} = \Lambda - A(\lambda I - A)$

 χ is an eigenvalue \Leftrightarrow $te(\chi I-A) < \Lambda$

ZI-A is singular,

· ≥1 > 2 eigenvalue

(dim Uz = 0 says only OE Uz... not on eigencubspace.)

Monday, July 10, 2017 10:36 AM

$$\frac{\lambda}{I} \qquad \text{geometric} \qquad \text{multiplially} \\
\Lambda \qquad (\text{shease any basis})$$

$$\text{dim } U_1(I) = \Lambda - \text{rk}(I - I - I) \qquad \text{fa(b)} = (t - I)^{\Lambda}$$

$$= \Lambda - \text{rk}(0) = \Lambda$$

$$\frac{\lambda}{I} \qquad \text{geometric multiplia}$$

$$C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$f(t) = (t - \frac{1}{2})^{2}$$

geom.
$$moltic(1) = 3 - rk(1.T-c)$$

$$= 3 - 2 \qquad \begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= 1$$

This is not diagonalizable, since there is only I Am.

fA(t) = (t-a,) (t-a) = ... (t-a,) kr Monday, July 10, 2017 alg, mh milt char pdy. (t-1)^ 1 1 $(t-1)^{2}(t-2)^{3}$ (t-1)3 3 **C**; Note I,B diagonalizable and gean mult-alg. but c not and geom # alg. [HW] For AEMn(C), (a) $(\forall \lambda)$ (geom. $mult_A(\lambda) \leq alg. mult._A(\lambda)$) (b) A is diagonalizable = $(\forall \lambda)$ (geom. $mult_A(\lambda) = alg. mult_A(\lambda)$)

Y field IF (C, IR, ...), [DO!] Monday, July 10, 2017 10:48 AM $\forall mome polynomial felf[t], eleg f = n \ge 1$, I nxn matrix A s.t. $f_A = f$. (8,418 + 8.4.19

Elegant Solution: "companion matrix" from DLA)

 $g(t) = (t - \alpha_1)(t - \alpha_2)^{-1} (t - \alpha_n)$ = a0+a,1t+... +an-(t"+t" $\alpha_{n-1} = -\sum \alpha_i = -\sigma_i(\alpha_i, \alpha_2, \ldots, \alpha_n)$ $a_{n-2} = \sum_{i \neq j} \alpha_i \alpha_j = \sigma_2(\alpha_i, \alpha_2, ..., \alpha_n)$ $a_{n-3} = -\sum_{i \in j} \alpha_i \alpha_j \alpha_i = -\sigma_3 (\alpha_i, \alpha_2, \dots, \alpha_n)$ $\sigma_i, \sigma_2, \dots$ ore the $\sigma_1, \sigma_2, \dots, \sigma_n$ are He

 $\alpha_{n-j} = (-1)^{j} \sigma_{j} (\alpha_{1}, \alpha_{2}, ..., \alpha_{n})$ elementary symmetric polynomials: $\alpha_{0} = (-1)^{n} \pi \alpha_{i} = (-1)^{n} \sigma_{n} (\alpha_{1}, \alpha_{2}, ..., \alpha_{n})$

Let's lock at the coeffs. of char. poly.

= bo + b, t + --- + bn-, tn-1 + tn

 $b_{n-1} = -T_{r}(A) = -(a_{11} + ... + a_{nn})$

 $b_{n-2} = ?$

= Z det (2x2 symm submatrices)

bn-3 = - 2 det (3x3 symm

bn-j = (-1) \ Z det

(jxj symme) [-aji], submatrices)

bo = (-1) det (A).

Monday, July 10, 2017 11:02 AM

$$f_{A}(t) = b_{0} + b_{1} t + \dots + b_{n-1} t^{n-1} + t^{n}$$

$$= (t - \lambda_{1})(t - \lambda_{2}) \cdots (t - \lambda_{n})$$

$$= (t - \lambda_{1})(t - \lambda_{2}) \cdots (t - \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots (i + \lambda_{n})$$

$$= (i + \lambda_{1})(t - \lambda_{2}) \cdots$$

$$\frac{\operatorname{coeff}}{\operatorname{Thm}} \frac{t^{n-1}}{2\pi i} = -(\Sigma \lambda_i)$$

$$\frac{\operatorname{Thm}}{2\pi i} = \operatorname{Tr}(A). \qquad \begin{pmatrix} 5 & 7 & * \\ 7 & -3 \end{pmatrix}$$

$$\sum \lambda_i = 9$$
.

constat:
$$(-1)^n det(A) = (-1)^n TT \lambda_i$$

Cor. A 13 singular (3)
$$\lambda = 0$$
 is an eigenvalue.

(Cor.

Quarter mechanics

[HW] IP[t]: space of real polynomials

D:= d dt find M: P[t] -> P[t]

D(f) := f's.H MD-DM=I.

M: vey simply defined)

subspace of liveer transformation Investant

W & V is an invariant subspace if

q(w) ⊆ w; i.e., (vwew)(q(w)e w).

· place passing through origin I to axis of station.

Monday, July 10, 2017 11:18 AM

$$\begin{array}{lll}
P & \text{[t]} = \{f \in P[t] \mid \text{deg } f \leq n\} \\
\text{dim} & \text{which } f \in P[t] \mid \text{deg } f \leq n\} \\
\text{dim} & \text{which } f \in P[t] \mid \text{deg } f \leq n\}
\end{array}$$

$$\frac{d}{dt} \text{ appraham} f = n + 1$$

$$\frac{d}{dt} \text{ appraham} f = n + 1$$

$$\frac{d}{dt} \text{ appraham} f = n + 1$$

cyclically permite the basis reators...

Final eigenvalues and an eigenbasis over C.

- {o}, R≤n[t]

[CH] 16, 4-34 (a): Find all invariant subspaces of cyclic permitation matrix.

if -(IC nonstagelor)(A=c-BC) $\frac{\text{Def.}}{(n \times n)}$

00) This is on equivalence relation on Mn (F), whose IF is any number field

Thm Over C, every A & Mn (C) is

Similar to a triangular matrix.

DO)

1-dim invariant subsepace = Spon of an eigenvector.

 Δ $\varphi(x) = \lambda x$

A,B ∈ Mn(F) and AB = BA, then $(\forall \lambda)(U_{\lambda}(A))$ is B-invariant).

eigensubspace

Suppose: q: V -> V

1in. transformation.

U

V

le is q-muniant.)

e,,..., ek; basis of U

extend to basis of V

then U is 4-involant =>

[4]. =

11 amostart

q(e₁) ∈ U,

50

[4(e1)] only needs

the first & rectors.

_

this block is 0

In hersf Suppose

basis. e,,..., e,

 $U_i := Span(e_i) is hvariant$ du ui = i.

Uz: = Spor (e, ez) P is invoiat uz : = Spor (e, ez, ez) is 4 invorant So

0 < U, < U2 < --

LUn=V

maximal chain of subspaces (contains prior and almension diff = 1) max-chan

of subspaces all q-variant

Monday, July 10, 2017 11:42 AM Equivalent restatement of Thm: If V is an Λ -dim space over C, then I max. Shown of subspaces that are q - invariant. Obs. 1-dim. invariant subspace always exists. (Characteristic poly, has a cost by scalars

Fund. Theren of Algebra over C, C) so eigenvalue exists => eigenveeter exists

=> spon of eigenvector is 1-dilm. invertent subspace.)

This does not recossonily hold in R (eg. rotation - no eigenvector.)

00 If n even, $\exists q: \mathbb{R}^n \to \mathbb{R}^n$ with

no eigenneator.

q: 12" -> 12", 4 has [HW] If a odd and eigenvector

pest of proof for next the. Monday, July 10, 2017 [HW] (for wed.) Prove that diagonalizable matrices are dense in $M_n(C)$; i-e. (YAEMn(C))(YE>O)(JBEMn(C)) (B is diagonalizable and (Vi,j) (laij-bij1 < e)) 5 hims.) f(b) = t 2 + 1 (YAEMn (F)) f(A) = A2+ I (Jf EFFQ), f #0)(f(A)=0) $f(t) = a_0 + a_1 t + \cdots + a_k t^k \quad a_{\sigma_1 \sigma_1, \dots, r}$ want $a_0 I + a_1 A + a_2 A^2 + ... + a_k A^k = 0$ nontroval lin. comb. of powers of A.
(I, A', A², ..., A^k) Clark: (]k)(A°, A', A', ..., Ak are lin. dep.)

Clorus: k=n2 works.

1 HW Prove this -> 2 likes, using only what we have proved

(n2+1 montrices)

already