Euclid's Algorithm efficiency:
Prove the H of iterations of Euclid's algorithm for \#s $a, b \mid 1 \leq b \leq a$ is $\leq 1+2 \log _{2} b$.

$$
a=b q+r
$$

$$
r_{1}=b-r_{1}
$$

Since $r>\frac{b}{2}$
(2) $r \frac{b}{2} \rightarrow \operatorname{gcd}(b, r)$
$r_{1}=b-r<\frac{b}{2}$ $q=1$.

For any 2 steps of Eudids algorithm, b (the seand argument) is halved

$$
2 \log _{2} b+1
$$

\# of lives b can be halved : 2 steps per halving
$\lim _{\mathbb{Q}} \mathbb{R}=\infty$.
Each \# in \mathbb{R} can be writer as a sequence of digits.
$\forall r \in \mathbb{R}$,

$$
\begin{aligned}
& -\in \mathbb{R}, \\
& r=a_{0}+a_{1}\left(\frac{1}{10}\right)^{1}+a_{2}\left(\frac{1}{100}\right)^{2}+\cdots \\
&
\end{aligned} \quad \begin{aligned}
& \frac{1}{10}, \frac{1}{10}, \quad
\end{aligned}
$$

$$
a_{0}, a_{1}, a_{2}, \cdots \mathbb{Z}, \frac{1}{10}, \frac{1}{100} \text { not hi } \text { indep }
$$ indef. X

Suppose \exists finite basis of \mathbb{R} :

$$
\begin{aligned}
& b_{1}, b_{2}, \ldots, b_{n}, \\
& \forall r \in R, \quad r=q_{1} b_{1}+q_{2} b_{2}+\cdots+q_{n} b_{n} .
\end{aligned}
$$

Ends q_{i} has $|\mathbb{Q}|$ possibilities...
Can we mate an argument wo cordihating?

Suppose $\quad \operatorname{dim} \mathbb{R}=n<\infty$.
Then $n+1$ elevents are linearly dependent. WIS: $\left(1, \pi, \pi^{2}, \ldots, \pi^{n}\right)$ is in. index.

$$
q_{0}+q_{2} \pi+q_{2} \pi^{2}+\cdots+q_{n} \pi^{n}=0
$$

All elements distinct b/c π transcendental:

$$
\begin{aligned}
& q_{k}^{\pi^{k}}=q e^{\pi^{l}} \\
& \pi^{k-l}-\frac{q e}{q l}=0
\end{aligned}
$$

ratan pdynoniol u/ π as a rod. bad.
In addition, $q_{0}, q_{1}, \ldots, q_{n}$ cannot be nontraid for the sore reason.

$$
\therefore\left(1, \pi, \pi^{2}, \ldots, \pi^{n}\right) \text { for in dep. }
$$

(DO) $\{\log p\} p$ is pone is in. indep. over \mathbb{Q}.
(DO) $f, g \in \mathbb{Z}[x], g \mid f$ in $\mathbb{Q}[x] \quad$ (ghq $=f$ some $h \in \mathbb{Q}[x])$ (manic)
then g if in $\mathbb{Z}[x] \quad(g h=f$ for sone $h \in \mathbb{Z}[x])$
$(\forall \lambda)$ (geom. $\quad \operatorname{mil}_{A}(\lambda) \leqslant$ alg. $\operatorname{molt}_{\lambda}(A)$) geom, mitt: $\operatorname{dim} U_{\lambda}(A)$
alg. molt: A of tires appearly in char poly. Let geans mut $=m$.

$$
S=(\underbrace{\left.\begin{array}{ccccc}
\begin{array}{cccc}
1 & & 1 & \\
x_{1} & \cdots & x_{m} & \ldots
\end{array} & 1 \\
1 & & 1 & & 1
\end{array}\right)}_{\text {eigenvectors }} \underbrace{1}_{\text {extend to basis }} \begin{array}{l}
1
\end{array})
$$

$B=$
 corresponds to basis of eigenspace eigenvectors sty in first m vector

$$
A=\left(\begin{array}{c}
-a_{1}- \\
-a_{2} \\
-a_{n}
\end{array}\right) \quad>
$$ $(t-\lambda) \stackrel{M}{m} \operatorname{det}(t I-A)$ alg. mut at least m 。

$$
A S=a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+\cdots+a_{n} \cdot x_{n}
$$

Char poly. is multiple of cha polys of diagonal blocks in a block triangle matrix.
(\Leftarrow) Assume $\forall \lambda$ alg. init $(\lambda)=$ gean milt $_{A}(\lambda)$. $\forall \lambda$ suppose $\operatorname{Geom}_{A}(\lambda)=a_{\lambda}$.
$\Rightarrow \exists a_{\lambda} \mathrm{im}$. independent eigenvectors associated of λ.

$$
\sum_{\lambda} \operatorname{agg}_{A}(\lambda)=\sum_{\lambda} a_{\lambda}=n
$$

$\operatorname{deg} f_{A}=n \Rightarrow n$ lin independent eigenvectors (eigenvectors to distinct eigenvalues are lin. indep.)

These form an eigenbasis.
$\left(\lambda_{n}\right)$

$$
\begin{array}{cc}
\sum_{i} a_{1, i} e_{1, i}+\sum_{2, i} a_{2, i}+\ldots+\sum_{n, i} e_{n, i} \\
\left(\lambda_{1}\right) & +\cdots,
\end{array}
$$

This is also an eigenvector for $\lambda_{1}=\nu_{1}$ (or 0.)
eigenneaturs to disknat eigernatues are in indeperdut.

A diagonatizable: $A \sim D, D$ diagonal $f_{A}=f_{D} \Rightarrow \lambda$ is eignnathe of $A \Leftrightarrow$ λ is siren vale of P
and

$$
\begin{aligned}
& \text { nd } \operatorname{alg} \operatorname{mult}_{A}(\lambda)=a l g \operatorname{mut_{D}(\lambda)} \\
& \text { gram } D(\lambda)=n-\operatorname{rk}(\lambda I-D)=a g_{D}(\lambda)
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
\lambda-\lambda_{1} & & 0 \\
\lambda-\lambda_{2} & 0 \\
0 & \ddots & \lambda-\lambda_{n}
\end{array}\right]
$$

Find eigenvalues + eigerbasis for

$$
\begin{aligned}
& \operatorname{det}(\lambda I-A)=\left\lvert\, \begin{array}{cc}
\lambda & -1
\end{array}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right. \\
& \lambda\left|\begin{array}{ccc}
\lambda & & \\
-1 & \lambda & \\
-1 & \vdots & \\
& & \ldots-1
\end{array}\right|+(-1)^{n+1}(-1)\left|\begin{array}{ccc}
-1 & \lambda & 0 \\
-1 & 0 \\
0 & & -\lambda
\end{array}\right| \\
& \lambda\left(\lambda^{n-1}\right)+(-1)^{n+2}(-1)^{n-1} \quad 1=\lambda^{n}-1=0
\end{aligned}
$$

$>n^{\text {th }}$ rooks of unity.

$$
\begin{aligned}
& { }^{\frac{2 \pi_{i}}{n}} \\
& \omega=e \\
& {\left[\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \mapsto\left[\begin{array}{l}
0 \\
1 \\
\vdots \\
0
\end{array}\right]} \\
& \text { works for onyx } \\
& \text { of the } n^{\text {th }} \\
& \text { roots of wiry. } \\
& A \vec{x}=\omega \vec{x} \\
& \omega=e \\
& {\left[\begin{array}{c}
\omega^{n-1} \\
\omega^{n-2} \\
\vdots \\
1
\end{array}\right] \omega^{n}=1} \\
& \text { matrix: } \\
& \left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & w^{n} & w^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & \cdots & w^{(n-1)^{2}}
\end{array}\right)
\end{aligned}
$$

discrete Founder transform matrix

$$
V\left(1, w, \cdots, w^{n-1}\right)
$$

Vandermande matrix

Lecture
circulant matrix

$$
C\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right)=\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & \cdots & a_{n-2} \\
a_{n-2} & a_{n-1} & a_{0} & \cdots & a_{n-3} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{1} & a_{2} & a_{3} & \cdots & a_{0}
\end{array}\right)
$$

(for Thurs -)
HW Find $\operatorname{det}\left(C\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right)$
factored into liver forms of the as:

$$
\prod_{j=0}^{n-1}\left(\alpha_{0 i j} a_{0}+\cdots+\alpha_{n-1, j} a_{n-1}\right), \alpha_{i j} \in \mathbb{C}
$$

Do not collalate,
(Astr for a hint tomorrow.)

$$
r k(A+B) \leq r k(A)+r k(B)
$$

(DO) $-k(A) \leq r \Longleftrightarrow A$ is the sum of r matrices of $r_{k}=1$.
(abulous)

$$
\Rightarrow \quad ?
$$

$\operatorname{rk}(A B) \leq \min \left\{r_{k}(A), r k(B)\right\}$
(DO) $C \in \mathbb{F}^{k \times l}$ has rank $\leq r \Leftrightarrow$

$$
\begin{aligned}
& C \in \mathbb{F} \\
& \left(\exists A \in \mathbb{F}^{k \times r}, B \in \mathbb{F}^{r \times l}\right)(A B=C)
\end{aligned}
$$

(DO) $A \in \mathbb{F}^{k \times l}$

$$
\begin{gathered}
A \in \mathbb{F}^{\prime} \\
r_{k}(A) \leq 1 \Leftrightarrow \exists v \in \mathbb{F}^{k}, w \in \mathbb{F}^{l} \text { s.t } \\
A=v w^{\top}
\end{gathered}
$$

(If v or w is 0 then $r k(A)=0$.)

$A \in M_{n}$ (F)
I, $A, A^{2}, \ldots, A^{n^{2}}$ are lin dep.
claim. $M_{n}(\mathbb{F})$ vector space $\cong \mathbb{F}^{n^{2}}$

$$
\therefore \quad \operatorname{dim} m_{n}(\mathbb{F})=n^{2}
$$

So $n^{2}+1$ matrices ore lin. dep.
i.e. $\exists f \in \mathbb{F}[H]$ st $f \neq 0$ and $f(A)=0$, with $\operatorname{deg} f \leq n^{2}$.

$$
\operatorname{dicg}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\begin{array}{cc}
\lambda_{1}, & 0 \\
0 & \lambda_{n}
\end{array}\right)=A
$$

$\operatorname{diog}\left(\mu_{1}, \longrightarrow \mu_{n}\right)=B$
$\mu \quad \ln u$

$$
\begin{aligned}
& A+B=\operatorname{diog}\left(\lambda_{1}+\mu_{1}, \lambda_{2}+\mu_{2}, \ldots, \lambda_{n}+\mu_{n}\right) \\
& A B=\operatorname{diag}\left(\lambda_{1} \mu_{1}, \lambda_{2} \mu_{2}, \ldots, \lambda_{n} \mu_{n}\right) \\
& \therefore f(A)=\left(\begin{array}{cc}
f\left(\lambda_{1}\right), & 0 \\
0 & f\left(\lambda_{n}\right)
\end{array}\right)=\operatorname{didg}\left(f\left(\lambda_{1}\right), \ldots,\right. \\
& \left.f\left(\lambda_{n}\right)\right)
\end{aligned}
$$

$$
c A=\operatorname{diag}_{\text {ag }}\left(c \lambda_{1}, \ldots, c \lambda_{n}\right)
$$

Cor. For a diagonal matrix A, $f(A)=0 \quad \Longleftrightarrow$ all λ_{i} are roots of f.

Cor $f_{A}(A)=0$.
Copley - Hamilton Theorem

$$
\left(\forall A \in M_{n}(\mathbb{F})\right)\left(f_{A}(A)=0\right)
$$

silly proof:

$$
\begin{aligned}
& \text { Silly prot: } \\
& f_{A}(t)=\operatorname{det}(t I-A) \\
& f_{A}(A)=\operatorname{det}(A I-A)=\operatorname{det} 0=0 \sim ?
\end{aligned}
$$

this is a
Prove Conley - Hamilton
for diagonalizable matrices. \downarrow
proof.
$A \sim D=$ diag DO Lemma: If $A \sim B$

$$
\begin{aligned}
& A \sim D=\text { diag } \\
& f_{A}=f_{D} \quad \text { and } g \text { is poly, } \\
& f_{A}(A) \sim g(A) \sim g(B) . \\
& f_{D}(D)=0 \quad
\end{aligned}
$$

For any $A \in M_{n}(\mathbb{\Phi})$, use density of diagonatizable matrices in \mathbb{C}.
we know $\mathbb{F} \subseteq \mathbb{C}$, so thus shard hoed for any number field
(DO $\mathrm{C}-\mathrm{H}$ mod P also follows.
(general fields)
Thu $\forall A \in M_{n}(\mathbb{C})$ is swindler to This is equivalent to saying $\left(T h_{m}{ }^{*}\right)$
\mathbb{C} and if V is a vector spade \exists maximal chan of Q:V $V \rightarrow V$, then \exists maximal chan of Q-invorlart subspaces.

$$
0=U_{0}<U_{1}<\ldots<U_{n}=V \text { where }
$$

$$
\operatorname{dim} u_{i}=i
$$

How do we know Tho $^{*} \Rightarrow$ Tho?

Let $[\varphi]_{\underline{e}}=A$.
Need to find other basis s.t $[\varphi]_{f}=[$]
Lemma $[\varphi]=[$
$\left.\begin{array}{l}\operatorname{span}\left(f_{1}\right) \\ \operatorname{span}\left(f_{1}, f_{2}\right) \\ \operatorname{span}\left(f_{1}, f_{2}, f_{3}\right)\end{array}\right\}$ are φ-invoiont subspaces.
$\psi: V \underset{\text { onto }}{\rightarrow} w$

$$
n \quad n-k
$$

Let $k:=$ her $\psi=\psi^{-1}(O w)=\{v \in V(\psi(v)=0\}$
$\operatorname{dim} \underset{r}{k}=n-\operatorname{dim} \underbrace{\sin (\psi)}_{w}=n-(n-k)=k$ (by rank - nullity theorem)
(DO) There is a one-to-one correspondence between subspaces of W and subspaces of V that contain K.
(If $R \leq W, R$ corresponds u/ $\psi^{-1}(R)$.) preimag.

This correspondence preserves indusion:

$$
\begin{aligned}
& \text { This correspondence } \\
& R_{1} \leq R_{2} \Rightarrow \psi^{-1}\left(R_{1}\right) \leq \psi^{-1}\left(R_{2}\right)
\end{aligned}
$$

Def Codimension
If $w \leq V$, then $\operatorname{codim}_{V}(w)=\max \#$ of vectors in V that are lin independent modulo W.

Def. v_{1}, \ldots, v_{k} are tiveerly independent modulo W if $\left(\forall \alpha_{i}\right)$ (if $\sum \alpha_{i} v_{i} \in W$ then $\alpha_{1}=\cdots=\alpha_{k}=0$).

Consider a line in G_{3} as W. on a perpendiater place passing through origin, pick 2 lie indef. vectors. sit lin. comb $\in W$,
Hovers then must be O, so coefficients are 0 blc in. indep.
(DO) $v_{1}, \rightarrow v_{k}$ are $i n$. indep. mad w $\Leftrightarrow v_{1}, \ldots, v_{k}$ are in. indep. and $\operatorname{Spos}\left(v, \ldots, v_{k}\right) \cap w=\{0\}$.

Cor. If $\operatorname{dim} \quad V=n$
dim $w=k$
then codimn $(w)=n-k$.
If $R_{1} \leq R_{2}$, then $\psi^{-1}\left(R_{1}\right) \leq \psi^{-1}\left(R_{2}\right)$ and $\operatorname{codim} R_{2} R_{1}=\operatorname{codim} \psi^{-1}\left(R_{2}\right)$

In particular, if $0=w_{0}<w_{1}<\cdots<w_{n-k}=w$ sit. $\operatorname{dim} w_{i}=i$,

$$
\begin{aligned}
& \text { sit. } \quad \text { dim } w_{i}=1, \\
& \text { then } k=\psi^{-1}\left(w_{0}\right)<\psi^{-1}\left(w,<\cdots<\psi^{-1}\left(w_{n-k}\right)=\right. \\
& v
\end{aligned}
$$

$$
\text { codim }=1
$$

If k is φ-muationt, then we cen define
 φ-action on W.

$$
\text { 隹 } \quad \psi \text { prog. } k=\text { axis of rotation. }
$$

action: rotation of plane.
φ-action on $w: \bar{\varphi}: w \rightarrow w$ st

$$
\begin{aligned}
& \varphi \text {-action on } w: \varphi: \varphi(\varphi(\sim)) \text { whee } v \in \Psi^{-1}(w) \text {. } \\
& \bar{\varphi}(w)=
\end{aligned}
$$

find $v \in \psi^{-1}(w)$, take $\varphi(v)$, and look at image back into $w: \psi$.

UTS: IP $v^{\prime} \in \psi^{-1}(\omega)$, then $\psi\left(\varphi\left(v^{\prime}\right)\right)=$

$$
\psi(\varphi(v))
$$

HW Show this b/c K is φ-invariant

Proof of The.
Base case: $n=0$.
By indudion on dim $V=n$. Assure $n \geq 1$. we have already seen $\exists 1$-dim a-inuariat

IH true for
\sim bic \exists eigenvector (cher poly has $\operatorname{dm}=n-1$ $a \operatorname{root} \rightarrow b / c \mathbb{C}$)
(DO) Find $\varphi: V \rightarrow w$ s.L
\rightarrow Tate span of per $\psi_{1}=k$
(tine for any $k \leq V$)
$\operatorname{dim} k=1$
(by rank-netily)

$$
\therefore \operatorname{dim} w=n-1
$$

φ acts on V
$\varphi^{-1}(R)$ eigenvector
$\bar{\varphi}$ acts on W
$\bar{\varphi}$ has max. thoth of $\bar{\varphi}-\ln v$. subspaces.

$$
0<w_{0}<w_{1}<\ldots<w_{n-1}=w
$$

$\operatorname{dim} w_{i}=i$

$$
\begin{aligned}
& u_{0}=\left\{o_{v}\right\} \\
& u_{i}=\psi^{-1}\left(w_{i-1}\right)
\end{aligned}
$$

$\operatorname{din} i$
all these U_{i} are
ρ - invodart ble
w_{i-1} is $\bar{\varphi}$-involort.
$\operatorname{dim} \psi^{-1}\left(w_{i}\right)=i+1$
叩
increases dimension by dim. of penal \rightarrow 1.

Notation:
$W=V / k$ quotient space.
Ref If $k \leq v$,

$$
\left.\varphi\right|_{k}: k \rightarrow k
$$

restriction.
translation of k by $V \in V$:

(DO $K=K+V \Leftrightarrow N \in K$.
$H W \quad k+v=k+v^{\prime} \Leftrightarrow v-v^{\prime} \in K$.
Def V / K is the set of cosets of

How may parameters are neeessoy in G_{3} plane 1 - two dory matter (remain in place).

Claim V / K is a vector space under the operations of

$$
\begin{aligned}
& \text { operations of } \\
& (k+v)+(k+u):=k+(v+u) \\
& \lambda \cdot(k+v):=k+\lambda v .
\end{aligned}
$$

(operation defined by representatives. ~ shad not charge between representatives.)

HW Prove this definition is sound.
(Replaing v, u with other members of the sore translate will not charge the translate.)

$$
v \longmapsto k+v
$$

This mop is a linear mop $V \longrightarrow V / K$ with bended k. (Anything in k amours to not a translation.)

