\mathbb{F} - Field (eeg. $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{F}_{p}$)
(DO) $\mathbb{F}[X]$ polynomial: integral domain

$$
\begin{aligned}
& \mathbb{F}^{n} \quad \underline{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \in \mathbb{F}^{n} \\
& \underline{x} \cdot y=\underline{x}^{\top} \underline{y}=\sum_{i} x_{i} y_{i} \\
& \underline{x} \perp \underline{y} \text { if } \underline{x} \cdot y=0 ;
\end{aligned}
$$

pependiodar
If $S \subseteq V, x \perp S$ if $(\forall s \in S)(x \perp s)$
If $S, T \subseteq V, S \perp T$ if $(\forall s \in S)(\forall t \in T)(\underline{s} \perp \underline{t})$
If $S \subseteq V$, we let S^{\perp} be the "pep" of S :

$$
S^{\perp}=\{x \in V \mid \underline{x} \perp S\}
$$

(DO) $S^{\perp} \leq v$ \uparrow
subspace
(DO) $S \subseteq T \Rightarrow S^{\perp} \geq T^{1}$
(DO) $S \leq\left(s^{\perp}\right)^{\perp}$
How If $u \leqslant v=\mathbb{F}^{n}$, then $\operatorname{dim} u+\operatorname{dim} u^{\perp}=n$.

Cor If $u \leqslant v$, then $u^{+1}=u$.
Proof we know $u \leq u^{1+}$
\therefore NTS: $\operatorname{dim} u=\operatorname{dim} u^{\perp \perp}$.
But by HW $\operatorname{dim} u=\operatorname{dim} u^{\perp 1}=n-\operatorname{dim} u^{\perp}$. o
Def $\underline{v} \in V$ is Botropic if $\underline{v} \neq 0$ but

$$
\underline{v}=0 .
$$

\mathbb{F}^{2} - find isotropic rectors

$$
\begin{array}{ll}
\mathbb{F}^{2}-\text { find } & \text { isotropic } \\
\text { Case } \mathbb{F}=\mathbb{R} \quad \underline{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad \underline{x} \cdot \underline{x}=\sum x_{i}^{2} \\
\end{array}
$$

In \mathbb{R}, most all be 0 .

Case $\mathbb{F}=\mathbb{C}$
Find $x, y \in \mathbb{C}$, not both 0 sit $x^{2}+y^{2}=0$.

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
i
\end{array}\right] \longrightarrow \overparen{\infty} \text { cydops }
$$

Case $\begin{array}{r}\mathbb{F}=\mathbb{F}_{s} \rightarrow\left[\begin{array}{l}1 \\ 2\end{array}\right] \\ \rightarrow\left[\begin{array}{l}1 \\ i\end{array}\right] \\ 2^{2}=-1\end{array}$
HW For what polves p does \mathbb{F}_{p}^{2} have an isotropic vector?
(a) Show: \mathbb{F}_{p}^{2} has an isotropic vector \Leftrightarrow

$$
\left(\exists x \in \mathbb{F}_{p}\right)\left(x^{2}=-1\right)
$$

(b) Experiment, find patten, make conjechre CH Prove carjeature.

DO

$$
\begin{aligned}
& V=\mathbb{F}^{n} \Rightarrow V^{\perp}=\{0\} \\
& \{0\}^{\perp}=V \\
& \varnothing^{\perp}=V \\
& S_{1} T \subseteq V \Rightarrow(S \cup T)^{\perp}=S^{\perp} \cap T^{\perp} \\
& S \subseteq V \Rightarrow S^{\perp}=\operatorname{span}(S)^{\perp}
\end{aligned}
$$

Def $S \subseteq$ F n
S is totally isotropic if $S \perp S$.
cor. S is totally isotopic \Leftrightarrow Span (s) is totally isotropic
(DO) $\forall S, T \subseteq V$, if $S \perp T, S_{\text {, }}(S) \perp S_{p e n}(T)$
The Let $u \leq v=\mathbb{F}^{n}$ be totally isotropic Then $\operatorname{dim} u \leq\left\lfloor\frac{n}{2}\right\rfloor$
(DO) For $S \subseteq V, S$ is totally isotropic \Leftrightarrow

$$
s \subseteq s^{1}
$$

Proof of 7 mm .
we prewar from lemma that $u \leq u^{\perp}$

$$
\begin{array}{ll}
k:=\operatorname{dim} u & k \leq n-k \\
n-k=\operatorname{dim} u^{\perp} & k \leq \frac{n}{2} \\
& k \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{array}
$$

HW For all even n, find an $\frac{n}{2}$-dim. totally - isotropic subspace in $\mathbb{C}^{n}, \mathbb{F}_{s}^{n}, \mathbb{F}_{2}^{n}$.

Project: for what pars (p, n) is there a totally - isotropic $\frac{n}{2}$-dim. subspace in $\mathbb{F p}^{n}$? (n is even.) \quad bonnet increase.
[H] Prove: every maximal totally - isotropic subspace of $\mathbb{F}_{2}{ }^{n}$ is maximum, and in fact, has $\operatorname{dom}=\left\lfloor\frac{n}{2}\right\rfloor$.
oddtome rales: $x=\{$ citizens $\},|x|=n$

$$
c_{1}, \ldots, c_{m} \leq x
$$

(1) $(\forall i)\left(\left|C_{i}\right|\right.$ is odd $)$
(2) $(\forall i, j)\left(\left|c_{i} \cap c_{j}\right|\right.$ is even)
lW $\left(\forall_{n}\right)$ (Find maximal oddtomen system with very fen clubs.)

If $\mathbb{F}=\mathbb{F}_{q}$ (field of order q).
V vector space of $\mathrm{dhm}=d$ over \mathbb{F}_{q},
then $|v|=q^{d} \quad b / c \quad V \cong \mathbb{F}_{q}^{d}$.
Eventoms Rules
$(-)(\forall i, j)\left(i \neq j \Rightarrow C_{i} \neq C_{j}\right)$
(1) $(\forall i)\left(\left|C_{i}\right|\right.$ is even)
(2) $(\forall i, j)\left(i \neq j \Rightarrow 1 c_{i} \cap c_{j}(\right.$ is area) $)$

$$
(\forall i, j)\left(\left|c_{i} \cap c_{j}\right|\right.
$$

is even)
we found such a system with $m=2^{\text {ch bs. }}$ ("married cupples" solution) Why is this maximal?

Clubs $=$ subsets of the couples.
$\rightarrow \square$ why cart re add
\rightarrow this dib?
Each married couple forms a club...
so thor wald hae on add intersection

CH. For $n \geq 7$ find solution wt $M=2^{\left\lfloor\frac{n}{2}\right\rfloor}$ which is not a marriedcouples" solutions.

HW (for Tres.)
Prove: $m \leq 2^{\left.2 \frac{n}{2}\right\rfloor}$
Hint: this class so for (3-4 hines).
(hint: not aware ne were talking abet Evesham)
Oddtoun/Eventome
Elmer Berlekamp - coding theory.
(D0) Every maximal Eventomn system is
(Allowed to use things stated bet nat proved.) maximum. Vector space V over F.
bihneer form

$$
f: V \times V \rightarrow \mathbb{F}
$$

linear in each variable

$$
\begin{aligned}
& \text { linear in each varable } \\
& \left\{\begin{array}{l}
f(\underline{u}+\underline{v}, \underline{w})=f(\underline{u} ; \underline{w})+f(\underline{w}, \underline{w}) \\
f(\lambda \underline{u}, \underline{w})=\lambda f(\underline{u}, \underline{w}) \\
\text { linear in 1 st var. }
\end{array}\right.
\end{aligned}
$$

$$
\left\{\begin{array}{l}
f(\underline{u}, \underline{w}+\underline{z})=f(\underline{u}, \underline{w})+f(\underline{u}, \underline{z}) \\
f(\underline{u}, \lambda \underline{w})=\lambda f(\underline{u}, \underline{u}) \\
\text { Greer in } 2^{n d} \text { variable }
\end{array}\right.
$$

Ex. $\quad V=\mathbb{F}^{n} \quad A \in M_{n}(\mathbb{F})$

$$
f(\underline{x}, y)=\underline{x}^{\top} A y \text {. }
$$

(DO) If $f: \mathbb{F}^{n} \times \mathbb{F}^{n} \rightarrow \mathbb{F}$, then

$$
\begin{aligned}
& \text { If } f: \mathbb{H} x \\
& \left(\exists!A \in M_{n}(\mathbb{F})\right)\left(f(x, y)=\underline{x}^{\top} A y\right)
\end{aligned}
$$

Def f is symmetric if $f(x, y)=f(y, x)$.
(DO) $f(\underline{x}, y)=\underline{x}^{\top} A \neq$ is symmetric
$\Leftrightarrow A=A^{\top}$ (A is symmetric.)
Def. f is alternating if $(\forall \underline{x})(f(\underline{x}, \underline{x})=0)$.
HW (a) If f is alternating, then

$$
f(x, y)=-f(y, x)
$$

(b) $f(x, y)=-f(y, \underline{x}) \Rightarrow f(\underline{x}, \underline{x})=0$ if char $\mathbb{F} \neq 2$.
(c) $f(\underline{x}, \underline{y})=-f(\underline{y}, \underline{x}) \nRightarrow \quad f(\underline{x}, \underline{x})=0$ over \mathbb{F}_{2}.

Def. $f: \underbrace{V \times \cdots \times V}_{k \text { fines }} \rightarrow \mathbb{F}$
f is k-liker if linear in each variable.
DeR f is k-linear alternating
(1) k-liner
(2) in every part of vars, f is alternating.
n-liner form, then $(\exists \alpha \in \mathbb{F})(f=\alpha \cdot$ dit $)$
$f=\mathbb{F}^{n} \rightarrow \mathbb{F}$ her form \Rightarrow

$$
\begin{aligned}
& f=\mathbb{F}^{n} \rightarrow \mathbb{N} \\
& \left(\exists a \in \mathbb{F}^{n}\right)(\forall \underline{x}, \quad f(\underline{x})=\underline{a}-\underline{x}) \\
& =a_{1} x_{1}+\cdots+a_{n} x_{n}
\end{aligned}
$$

$f: \mathbb{F}^{n} \times \mathbb{F}^{n} \rightarrow \mathbb{F}^{\mathbb{R}}$ billheer form \Rightarrow

$$
\begin{array}{ll}
f: \mathbb{F}^{n} \times \mathbb{F}^{n} \rightarrow \mathbb{F}^{\mathbb{}} \text { birder sore } & A \in M_{n}(\mathbb{F}) \\
f(x, f)=x^{\top} A \not f & \text { for } \\
& A=\left(a_{i j}\right)
\end{array}
$$

$$
\begin{aligned}
f(x, y) & =x^{\top} A y \\
& =\sum_{i} \sum_{j} a_{i j} x_{i} y_{j}
\end{aligned}
$$

DeR A quadratic form associated with the
birther for f is

$$
q(x)=f(x, x)
$$

(If f is alternating, $q(x)=0$.)
The s.t. $q(x)=g(x, x) \ldots$
unless \mathbb{F}_{\ldots}

$$
\begin{aligned}
& q_{f}(\underline{x})=f(\underline{x}, \underline{x}) \\
& f \text { bilinear form } \\
& f^{*}(x, y):=f(\neq 12
\end{aligned}
$$

11

$$
f^{*}(\underline{x}, y):=f(y, x)
$$

$q_{f^{*}}(x)$

$$
q(x)=\frac{f(x, x)+f^{*}(x, x)}{2}
$$

$$
\begin{aligned}
& \tilde{f}(x, y)=\frac{f(x, y)+f(y, x)}{2}-\text { syarcha } \\
& \underline{q}_{\tilde{f}}(x)=\frac{f(x, x)+f^{*}(x, x)}{2}
\end{aligned}
$$

unless cher $\mathbb{F}=2$. (cannet diuide by 0)

Thus,
Thm
\forall quadratic form q syimm bilineer form g

$$
\begin{aligned}
& \forall q u a d r o w \\
& \text { s.t } q(x)=g(x, x) \\
& \mathbb{F}=2
\end{aligned}
$$

unbess cher $\mathbb{F}=2$, ' symuctio

$$
q_{q}(x)=x^{\top} A \underline{x}=x^{\top T s} \tilde{A} \underline{x}
$$

$$
\tilde{A}=\frac{A+A^{\top}}{2}
$$

$$
\begin{aligned}
f(\underline{x}, \boldsymbol{y}) & =a_{11} x_{1} y_{1}+a_{12} x_{1} y_{2} \\
& +a_{21} x_{2} y_{1}+a_{22} x_{2} y_{2}
\end{aligned}
$$

$$
+a_{21} x_{2} y_{1}+a_{22} x_{2} y_{2}
$$

$$
q(x)=f(x, \underline{x})=a_{11} x_{1}^{2}+\left(a_{12}+a_{21}\right) x_{1} x_{2}+a_{22} x_{2}^{2}
$$

$$
\begin{array}{lll}
\\
q(\underline{x})=1 & q(x, y)=a x^{2}+b x y+c y^{2} \\
& x, y \in \mathbb{R} & q(x, y)=[x, y]\left[\begin{array}{ll}
a & b / 2 \\
b / 2 & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{array}
$$

$$
x=x, \quad \text { ellipses : }
$$

$$
y \longleftarrow x_{2}
$$

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
5 x^{2}+y^{2} & =1
\end{aligned}
$$

\downarrow spit mixed cuepricols

$$
\binom{-x}{-y} z\binom{x}{y}
$$

$$
5 x^{2}+x y+y^{2}=1
$$

(rotated) (angus symuch,)
hyperbolas:

$$
\begin{gathered}
x^{2}-y^{2}=1 \\
2 x^{2}-y^{2}=1 \\
x y=1 \\
x^{2}=1 \\
x= \pm 1
\end{gathered}
$$

amply set

- bic reg. and a 0 .
- all 0 .

$$
\begin{aligned}
& q(x, y, z)=a \cdot x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z \\
& q(x, y, z)= \\
& {[x, y, z] A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad A=\left[\begin{array}{lll}
a & d / 2 & e / 2 \\
d / 2 & b & f / 2 \\
e / 2 & f / 2 & c
\end{array}\right]}
\end{aligned}
$$

$$
\begin{align*}
& q(x, y, z)=1 \\
& x^{2}+y^{2}+z^{2}=1 \quad \text {-sphere } \\
& 3 x^{2}+5 y^{2}+z^{2}=1 \text {-ellipsoid } \\
& \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \quad 1
\end{align*}
$$

(b) Call 3 traces
© are elapses)
semi-axis lengths.
$3 x^{2}-5 y^{2}+z^{2}=1$ hyperboloid of 1 sheet (2 hyperbolas, 1 ellipse)
formed of straight lines. 2 sheets:

St Mary's Church - San Francisco roof formed this way.
st Gregory's Chish - Gandhi and Parl Erdös.

The If $A \in M_{n}(\mathbb{R})$ is a symnetire red matres, then A has an orthonormal ? (Spectral Theorem) eigerhasis.
$e_{1}, e_{2}, \ldots, e_{n}$, ot. $A e_{i}=\lambda_{i} e_{i}, \quad \lambda_{i} \in \mathbb{R}$ and $\underline{e}_{i} \cdot \underline{e}_{j}=\delta_{i j}=\left\{\begin{array}{cc}1 & i=j \\ 0 & i \neq j\end{array}\right.$
\uparrow
$I=\left(\delta_{i j}\right) \quad$ Kronecker delta
$\underline{e_{i}} \cdot \underline{e_{i}}=1 \Rightarrow H_{e_{i}} l l=1$
If $\underline{x} \in \mathbb{R}^{n}, \quad n \underline{x} n=\sqrt{x-x}=\sqrt{\sum x_{i}^{2}}$
rom

$$
\begin{aligned}
\underline{q}(x) & =\underline{x}^{7} A \underline{x} \\
x & =\sum \alpha_{i} e_{i} \\
A x & =\sum \alpha_{i} A_{i} \\
& =\sum \alpha_{i} \lambda_{i} \underline{e}_{1}
\end{aligned}
$$

$$
A=A^{\top}
$$

\{it\} ~ o n e i g e n b a s i s ~

$$
\begin{array}{ll}
x=\sum \alpha_{i} & A_{e j}=\lambda_{\underline{e}} \\
A x=\sum \alpha_{i} A_{i} & x=\sum_{j} \alpha_{j} e_{j} \\
=\sum \alpha_{i} \lambda_{i} \underline{e}_{1} & \sum \lambda_{i} \alpha_{i}(\underbrace{x_{i}}_{\underline{x} \cdot \underline{e}_{i}})
\end{array} \begin{aligned}
& \underline{e_{i}} \cdot e_{i}= \\
& \sum_{j} \alpha_{j} \underbrace{e_{j} \cdot e_{i}}_{0} \\
& x^{\top}\left(\sum \lambda_{i} \alpha_{i} \underline{e}_{i}\right)=
\end{aligned}
$$

So

$$
\underline{x} \cdot \underline{e_{j}}=\sum_{j} \alpha_{j} e_{j} \cdot \underline{e_{j}}=\underbrace{\alpha_{i} \underbrace{}_{i} \cdot \underline{e_{i}}}_{\text {normally, July } 14,2017}=\alpha_{j}
$$

and $\sum \lambda_{i} \alpha_{i}\left(x^{\top} e_{i}\right)=\sum \lambda_{i} \alpha_{i}\left(x \cdot e_{i}\right)$

$$
=\sum \lambda_{i} \alpha_{i}^{2}=q(x)
$$

So equation $q(x)=1$ is equivalent to $\sum \lambda_{i} \alpha \delta^{2}=1$.
This is an ellipsoid $\Leftrightarrow \forall \lambda_{i}>0$.
half axes: $\frac{1}{\sqrt{\left|\lambda_{i}\right|}}$

potato in otter space.

inert trial tensor \rightarrow symreture real rachis \Rightarrow by spectral thu. has on obthoned cubers.

Thus, evey object sime to ellipsord - 3 1 axes of rotation.

Rayleigh's Prinaple.

$$
\begin{aligned}
& A=A^{\top} \in M_{n}(\mathbb{F}) \\
& q(\underline{x})=\underline{x}^{\top} A \underline{x} \\
& a(x)
\end{aligned}
$$

$$
R_{A}(\underline{x})=\frac{q(\underline{x})}{n x n^{2}} \quad \text { Rayleigh quothent. }
$$

$$
(\forall \mu \neq 0)\left(R_{A}(\mu \underline{x})=R_{A}(x)\right)
$$

$$
(\square 0)\left(\exists \underline{x}_{0}\right)\left(R_{A}\left(x_{0}\right)=\max _{\underline{x} \neq 0} R_{A}(\underline{x})\right)
$$

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \quad \lambda_{n}=\min _{\underline{x} \neq 0} R_{A}(x) \text {. }
$$

Rayleighs Prinaple: $\lambda_{1}=\max _{x \neq 0} R_{A}(x)$. 44
(Hint: $q(x)=1$ ean be expressed as $\sum \lambda i \alpha_{n}^{-2}=1$)
Det Orthonomal besis of \mathbb{R}^{n} : basis $\underline{1}_{1} \ldots$.... en s.t $\underline{e}_{i}-e_{j}=\delta_{i j}$. (ex. standerd basis.)

Suppose e_{1}, \ldots, e_{n} is oN B of \mathbb{R}^{n}.

$$
\begin{aligned}
& {[x]_{\underline{e}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]=\underline{\alpha} \quad \underline{x}=\sum \alpha_{i} \underline{i}} \\
& 7=\sum \beta_{1} \underline{e}_{i} \\
& {[y]_{s}=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{0}
\end{array}\right]=\beta} \\
& \underline{x} \cdot y=\left(\sum_{i} \alpha_{i} e_{i}\right)\left(\sum_{j} \beta_{j} e_{j}\right) \\
& \begin{aligned}
=\sum_{i} \sum_{j} \alpha_{N} \beta_{j} \underbrace{e_{i} e_{j}}_{0 \text { less }} & =\sum_{i} \alpha_{i} \beta_{i} \frac{e_{i} \cdot e_{d}}{} \\
& =P
\end{aligned} \\
& 0_{i j}^{\text {mess }}=\sum_{i} \alpha_{i} \beta \lambda=\underline{\alpha} \cdot \underline{\beta} .
\end{aligned}
$$

Th $\underline{x} \cdot \boldsymbol{y}=\underline{\alpha} \cdot \beta$ if $[x]_{\underline{e}}=\underline{\alpha}$ and $[y]_{\underline{e}}=\underline{\beta}$ in ONBE.

$$
\begin{aligned}
& \|x\|^{2}=\underline{x} \underline{x}=\underline{\alpha} \cdot \underline{\alpha}=\|\alpha\|^{2}=\sum \alpha_{i}^{2} \\
& x \perp \forall \Leftrightarrow \underline{\alpha} \perp \beta .
\end{aligned}
$$

In ONB $q(\underline{x})=\sum \lambda_{i} \alpha_{i}^{2}$ and $\|x\|^{2}=\sum a i^{2}$.

$$
u=\operatorname{span}\left(e_{1}, c_{2}\right)
$$

$$
\min _{x \in U} R_{A}(x)=\lambda_{2}
$$

$$
x \neq 0 \quad \text { by Rayleigh }
$$

Rorinerple

Fischer - Courant Thm

$$
\begin{gathered}
\lambda_{i}=\max _{u \leq \mathbb{R}^{n}} \min _{x \in u} R_{A}(\underline{x}) \\
\operatorname{din}=i \underline{x} \neq 0
\end{gathered}
$$

HW (for Tives.)
$A \in M_{n}(\mathbb{R})$ syomm i ect out $i^{i-\frac{y}{n}}$ rav and $i^{i b}$ colomm.
$B \in M_{n-1}(\mathbb{R})$ symm

$$
B=\hat{i}^{A} \hat{i} \quad(\text { remad. })
$$

A: $\quad \lambda_{1} \geq \cdots \geq \lambda_{n}$
B: $\mu_{1} \geq \cdots \geq \mu_{n-1}$
Eigenvalices ontrlace $\boldsymbol{N}_{\text {... (follows fom }}$
Thm. (Interlaing Theerem Fischer-Courant)
for eigenvalues of real matrices.)

HW A is adjacency matres of a graph
$G=(V, E)$, whee $W 1=n$
Eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$.
Remember: $\lambda_{1} \leq \max$ degree.
Show: $\lambda_{1} \geq \arg$. degree $=\frac{\sum_{a \in N} \operatorname{deg}(a)}{n}=\frac{2 m}{n}$
(1 line based an Rayleigh's pindple).

Hint for Lemming assigned wed:

$$
A \in M_{n}(\mathbb{F})
$$

f is polynomial st. $f(A)=0$
Suppose $f=g^{-h}$ st $\operatorname{gcd}(g, h)=1$.
then $\mathbb{F}^{n}=\operatorname{ker}(g(A)) \oplus \operatorname{Ker}(h(A))$.
Hut: ged is a liver combination, with polynomials as coeffidents.

* Reminder! HW from wed/Thurs. leches due Mon.

