Wednesday, July 19, 2017 9:34 AM

$$f(t) = \frac{at^2 + bt + c}{at^2 + e} \qquad d_{1}e > 0$$

$$f(t) = \frac{at^2 + bt + c}{at^2 + e} \qquad d_{1}e > 0$$

Suppose $(\forall t \in \mathbb{R})(f(0) \geq f(t))$.

Then $b = 0$.

$$U \leq F^{n}$$

$$dm u + dm u^{1} = n$$

$$X u = u^{1} = v$$

$$L u = v$$

$$L u = v$$

$$L u = v$$

Wednesday, July 19, 2017 9:40 AM

$$V = 0$$
 $V = 0$

Wednesday, July 19, 2017 9:40 AM

 $V = 0$
 $V = 0$

$$SCV S = 0 \Rightarrow Y = 0.$$

$$(ASES)(X+S).$$

positive derived and
$$u = v$$

(DO) $u = v = v$

In porticular, alm $u = v$.

Pythengerean Theorem

If
$$a \perp b$$
 then $||a+b||^2 = ||a||^2 + ||b||^2$.

If $a \perp b$ then $||a+b||^2 = ||a||^2 + ||b||^2$.

If
$$a \perp b$$
 then

If $a \perp b$ then

 $Ca_1a_2 + Ca_2b_1$, $a + b > 0$
 $Ca_1b_2 + Ca_2b_1$
 $Ca_1b_2 + Ca_2b_2$

Wednesday, July 19, 2017 9:45 AM

(DO) V1, ..., Vk where
$$v_i \perp v_j (i \neq j)$$

INE $v_i \parallel^2 = \sum ||v_i||^2$.

P: $V \rightarrow V$

V, W

Evolution, Anthe dimensional.

Def $\psi: W \rightarrow V$ is a transpose

I of φ if:

($\forall x \in V$)($\forall y \in W$)($\angle \varphi_{X,Y} > = \angle X$, $\forall y > \rangle$)

Then $\forall \varphi \exists !$ transpose.

Proof Choose an ONR in V, W who one can be rewritten $\angle u_i, v_i = [u_j][v_j]$

Condition above can be rewritten $\angle u_i, v_i = [u_j][v_j]$

($[\varphi_j][x_j]^T[y] = [x_j]^T[y_j][y_j]$

($[\varphi_j][x_j]^T[y_j] = [x_j]^T[y_j][y_j]$

($[\varphi_j][x_j]^T[y_j] = [x_j]^T[y_j][y_j]$

Then $[\varphi_j]^T = [\varphi_j]$ by previous $[\varphi_j]^T = [\varphi_j]^T = [\varphi_j]^T$

Then $[\varphi_j]^T = [\varphi_j]$ by previous $[\varphi_j]^T = [\varphi_j]^T$

LOGIC: V uniqueness

11 existence

q: v -> v is a linear transformation, Wednesday, July 19, 2017 UEV 13 4- Invariant => ut is 4-invariant Proof Acsumption: (YUEU) (4(N)EU) (4~eu1)(4T(~) eu1) (Yv) (if v+ v Her (Yweu)(<w, 4T(v)>=0)) D.C. v14(u) ble Uis q-modent qu) = u In Finite - diversional Evolution space, Ut is "orthogonal complement"

Def. 9: V-> V 13 symmetric if q = q^T; i.e. (Yx,y)(24x,y>= < x, 4y>).

00 q is symmetre (=) [4] one is symmetre.

(regardless of the choice Proof [4] = [4] of the ONB - if the for one ONB, the for all.) [9] = [97]

 $\Leftrightarrow [\varphi] = [\varphi]^T \quad \Box$

Cor. (Spectral Thm)

If $\varphi: V \to V$ symmetric In. transformation then

q has ON eigenbasis. V; Finite - dim Eudliden (R)

Lemna: If q: V -> V symbolive

and dim V ≥ 1, then I eigenreator.

Proof. (of spectral Thm modulo Lemma)

By indudion on n=dim V:

bose cuse: $n = 0 \Rightarrow \beta = 0N$ eigenbasis

Assume $n \ge 1$ and than the for dom $\le n-1$.

Wednesday, July 19, 2017 By Lemma, I eigenvector. Divide by norm -> e1 where Ne, 11 = 1 and qe, = x,e,. U: = spon (e,) > 1-dim 4-invalant subspace If u is q-invalant, then ut is q-invalant; i.e. q-modet (ble symmetric.) v = u D u1 din $u^{\perp} = n - 1$ (by prevous (DO)) Let $\overline{\varphi} := \varphi|_{U^{\perp}}$. we wish to apply indudive hip. to \overline{q} . Note q: u > u , so q is a libeer transformation restitution let 13 q-invariant Cloubs. \$\overline{\tau} is symmetrie; i.e. (\tau, y \in U^{\tau}) $\overline{q}(y) = q(y)$ and $\overline{q}(x) = q(x)$ $(2 \times , \overline{q}y) = (4 \times , y)$ $(4 \times , y) \in u^{\perp}$ by def. of reshibler, and we know (<x, ely>= 100 so q symmetric as well

(DO) If V is Eudvoleen and UEV, Hen U is Euchdean urt. some inner product. restricted to u conditions satisfied => apply ind hyp By ind. hyp. I on eigenbasis of 4: ezi..., en e ul s.t , qeò = riei $(\forall i \geq 2)(||ei|| = 1)$ $(\forall i \geq 2)(||ei|| = 1)$ $(\forall i \geq 2)(||ei|| = 1)$ $(\forall i \geq 2)(||ei|| = 1)$.. e,, e2,..., en i 2 2 on eigenbess of q qui = qei = xiei. $e_i \perp e_i$ $i \geq 2$ b/c $e_i \in Spen(e_i)^{\perp} \forall i \geq 2$. Now prove lemme If 9: V symm lin transformation w/dln V21, then Feigenventor of

Proof 1.

Def. Payleigh quotient: $R_{\varphi}(x) = \frac{\langle x, \varphi_{x} \rangle}{\langle x, x \rangle} |_{x|_{z}^{2}}$ (mode: $R_A(x) = \frac{x^T A x}{x^T x}$)

Wednesday, July 19, 2017 10:31 AM
Hanks its maximum,
Sublemma. $\operatorname{Kep}(X) \xrightarrow{\operatorname{def}(X)} \mathbb{R}_{\operatorname{reg}}(X)$
i.e. $(\exists x_o^{\vee})(\forall x \neq 0)(R_q(x_o) \geq R_q(x))$
다 이 기계
Find cont bounded firetion R-SIR that
Find cont bounded to mens.
does set attach its mens.
does cet allow (or its min.) (or its min.) fruite dosed int Aroten(x).
(or its mh.) fruite closed int Arcten(x).
-C L. [a, b] -> 1K 15 cont,
Han it allows
How to generalize? No dosed if Del SCIR is closed if points.
Det SCIR is closed it points. it contains all of its limit points. limit point of S if
Det I me all of its Imm
it contains
it contains all of its it contains all of its Del X is a limit part of S if
\(\Tv-c, \x\e\)\(\)
Closure of S: S: Set of
B = R diagonalizable methres all natives (dusity)

Than If SEIRn is desert and bounded, then Vf: S -> R" s.t. f", f altahe its maximum.

Def A subset of a finite - dim Endiden space is compact if it is closed and bounded $Rq(\lambda x) = Rq(x)$ (b)c non and denom both mulphed by 22).

{ Values of Rep over V 15033 = Evalues of Rep on unit sphere: {xev|11x11=133}

(00) unit sphere is closed. Then Ry(X) with attach its mensimm bla unit sphere compact and Rep(x) cont., so (3x0 +0)(4x +0)(Rq(x0) 2 Rq(x)).

Claim. Xo is an experient or Proof
$$U := spen(X_0)$$

Proof $U := spen(X_0)$

NTS: U is $q - modert$

NTS: U is $q - modert$

Eq. to showing: U^{\dagger} is $q^{\dagger} - modert$
 $V = V = V^{\dagger}$ (by symm.)

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$) ($V = V = V^{\dagger}$).

We $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$) ($V = V = V^{\dagger}$).

Let $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$) ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$) ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$) ($V = V = V^{\dagger}$) ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$) ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$) ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$) ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

 $V = V = V^{\dagger}$ ($V = V = V^{\dagger}$).

Thus
$$P_{\alpha}(x_0 + t_{\alpha}) = \frac{e^2x_0, q(x_0) + 2t e^2x_0, q(y_0)}{||x_0||^2 + t^2||y_0||}$$

NTS: (Xo, 9(w) > = 0.

f(o) > f(t) Yter ble

 $f_{q}(x_{0}) \ge f_{q}(x)$ where $x = x_{0} + t_{w}$. of xo.

If 11/211=0 then x 1 9(0) (9(0)=0),

so assure llw1+0. (w+0)

11x011 + 0 b/c x0 +0 by det and 1/x01/20

so by 1st 00 from boday (xo, q(w) > = 0.

Then Xo I q(w) Yweul, so

is q-involant and us q-involat

and so to is an eigenvector.

Proof 2. $A \in M_n(\mathbb{F})$ and $f_A(\lambda) = 0$ Leff then char. pdy

\[
\chain is an evapourable (over F).
\] i.e. (FrEFr)(AZ = ZZ). ble $(\lambda I - A)$ singular. $\Rightarrow (\lambda I - A)_{y} = 0$ nontrol soln. In T.

For lemma, NTS: $A \in M_{\Omega}(IR)$, $A = A^{7}$ then \exists real eigenvalue. Show If $\lambda \in C$ is a complex eigenvalue $\lambda \in R$ $z \in C$ is red $\Leftrightarrow z = \overline{z}$. $\lambda = \overline{\chi}$ ス= 3.

A EMn(C) A = (aij) $A = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix}$ A* = conjugale transpose of A $A^* = (bij)$ where bij : aji $A^* = (\frac{\overline{z_{11}}}{\overline{z_{12}}}, \frac{\overline{z_{21}}}{\overline{z_{21}}})$ Det A is Hermitian if $A = A^*$, "adjoint" ("self-adjoint"). Obs. Aemn (R) is

Hernitan () A is symmetric ef a Hermitian material are

7hm. All edgenrahes ((AB) = BTAT and DO (AB)* = B*A* ZW = ZW, Z+W = Z+W, : AB = AB).

Proof (of Thm.)

 $x \in \mathbb{C}^n$, $x \neq 0$, $\lambda \in \mathbb{C}$. Ax= Xx whee

NTS: $\lambda = \overline{\lambda}$.

Hermitian quadrative form: $f(x) = x^*Ax$ $= x^*(\lambda x)$

z= 0.4 bil z= a-bil $= \lambda x^{*} x$

If $u \in \mathbb{C}^n$, $u = \begin{pmatrix} u, \\ \vdots \\ u_n \end{pmatrix}$, $u_i \in \mathbb{C}$ a2-(67)1 = 2242

 $\underline{u}^* \underline{u} = [\overline{u}_1 \ \overline{u}_2 \ ... \ \overline{u}_n] \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \sum_{i=1}^n \overline{u}_i u_i$, 1Z) ²,

= \(\hat{\sum_{12}} \) |u_i|^2 = |lu|^2.

Then f(x) = > 11x112 and 11x1170, real.

Wednesday, July 19, 2017 11:35 AM
$$f(x) \in \mathcal{C}, \quad \text{So} \quad \overline{f(x)} = (x^*A \times)^* = x^*A^*x^*$$

$$= x^*A \times = f(x).$$

$$= x^*A \times = f(x).$$

$$\forall_c \text{ Herritor}$$

$$\frac{f(x)}{f(x)} = \frac{1}{|x|^2} = \frac{1}{|x|^2} \frac{1}{|x|^2}$$

$$= \frac{1}{|x|^2} \frac{1}{|x|^2} \qquad |x|^2$$

$$= \frac{1}{|x|^2} \frac{1}{|x|^2} \qquad |x|^2$$

$$\frac{1}{3} \text{ follows} + \text{Host} \qquad \frac{1}{3} \frac{1}$$

So 3 is real eigenvalue.

$$\mathbb{R}^{n}$$
 $A = [e_{1}, \dots, e_{n}]$ $I_{n} = (Sij)_{n \times n}$ cols: $e_{1}^{T}e_{j} = Sij$

O(n): set of nxn orthogord matrices.

Proof A & O.(n) (=> ATA = I.

rows of B are ONB (=> BB7=I.

NTS: ATA = I => AAT = I.

<u>Penork</u>. AA^T is symmetrice ble (AA^T)^T=

ATAT = AAT.

ATA=I ATA.

1) I A - 1 b/c cols. are ONB.

@ right numply ATA = I by A-1:

ATAA - 1 = I A - 1 ATI = IA $A^{T} = A^{-1}.$

Then $AA^T = AA^{-1} = I$.

2rd Miracle here... let's mehe

x, y, z e R x is left incre of y Z is right inverse of y. $0 \times y = 1$ 0 yz = 1 xy = 1 (6) (xy) z= 1-2 (right multiply by Z) Proof $\chi(yz) = 1-2$ (associativity) $\chi \cdot l = l \cdot Z \quad (0)$ X = Z. (milt. identity) z = (xy)z = x(yz) = x. associativy. Cor. I left inverse and I right inverse (=> I inverse

Cor. I left inverse and I right inverse (=> I inverse (two-sided)

The dim V is finite, q. V -> V, q has left

inverse => I q-1.

DO) False in hombe dimensions - find of with more ther one left inverse. Suppose A & IF KXL.

The A has a right inverse \Leftrightarrow col(A) = \mathbb{R}^k i.e. $\operatorname{colr}_k(A)$ $\exists B \in \mathbb{F}^{k \times k} \text{ s.t. } AB = \mathbb{I}_{k \times k} = \begin{bmatrix} e_1 \dots e_k \end{bmatrix}$, $\begin{bmatrix} e_1 \dots e_k \end{bmatrix}$, $\begin{bmatrix} e_1 \dots e_k \end{bmatrix}$, $\begin{bmatrix} e_1 \dots e_k \end{bmatrix}$ $B = \begin{bmatrix} e_1 \dots e_k \end{bmatrix}$ (cols of B)

I bij => ej e col(A) (colum s pase of A)

A has left house & row th(A) = l.

Cor. AGMn (P) has left inv (S)

row rk(A)= n @ colrk(A)=n @ 2nd mrade.

AEMn (F) has right im.

Hademard matrix: (H-matrix)

AEMn (±1)

s-t columns are orthogonal.

(DO) Show 2 rows are orthogonal.

(DO) Find on 4-matrix for n=2k.

DO If nxn H-mahx exists

n=2 or 4(n.

3 H-mahrs that is CH If p = -1 (mud 4)

(p+1) x (pH).

DO) If $A \in O(n)$, then all (complex) eigenvalues

of A have 121=1.