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Note. While this chapter contains a substantial amount of material on infinite graphs,
its focus is on finite graphs. Therefore all graphs will be finite, unless otherwise stated.
Exceptions are Sections 3.6, 3.7, and 3.11, where graphs are generally infinite, and Sections
3.9, 3.10, 5.3, where a main theme is the interplay between finite and infinite.

Surveys. A portion of the material discussed in this chapter is covered in two survey arti-
cles on automorphism groups of graphs: Cameron [Cam83] and Babai–Goodman [BG93].
Chapter 12 of Lovász [Lov79a] is a nice introduction to the subject. A beautiful treatment
of the basics of higher symmetry is Biggs [Big74]. Brouwer, Cohen, Neumaier [BCN89] is a
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monumental yet enjoyable work on distance-transitivity and related subjects with detailed
up-to-date information. Much of our current knowledge on graph isomorphism testing is
summarized in Babai, Luks [BL83]. The general concept of reconstruction (invertibility of
various constructions) is illustrated in Chapter 15 of Lovász [Lov79a]. Recent surveys on
the Kelly-Ulam graph reconstruction conjecture include Bondy [Bon91], Ellingham [Ell88]
(see also [BH77]).

0 Introduction

0.1 Graphs and groups

A study of graphs as geometric objects necessarily involves the study of their symmetries,
described by the group of automorphisms. Indeed, there has been significant interaction
between abstract group theory and the theory of graph automorphisms, leading to the
construction of graphs with remarkable properties as well as to a better understanding
and occasionally a construction or proof of nonexistence of certain finite simple groups.
On the other hand, in contrast to classical geometries, most finite graphs have no automor-
phisms other than the identity (asymmetric graphs), a fact that is largely and somewhat
paradoxically responsible for its seeming opposite: every (finite) group is isomorphic to
the automorphism group of a (finite) graph.

The study of graphs via their symmetries is rooted in the classical paradigm, stated in
Felix Klein’s “Erlanger Programm”, that geometries are to be viewed as domains of a group
action. Although graphs, as incidence structures, may seem to be degenerate geometries,
we note that any incidence structure (such as a projective plane) can be represented by
a graph. (The Levi graph L of an incidence structure S is a bipartite graph; its vertices
correspond to the points and lines of S; and adjacency of vertices of L corresponds to
point-line incidence in S.) Such representations preserve symmetry and allow fruitful
generalizations (such as “generalized polygons”, Chap. 13, Sec. 7).

In this chapter we try to illustrate the variety of ways in which groups and graphs inter-
act. The effect of powerful results of group theory (such as the Feit–Thompson theorem on
the solvability of groups of odd order) will be evident already in the introductory Sec. 1.1.
Consequences of the Classification of Finite Simple Groups (CFSG) are required for some
of the results in Sec. 4.3 and for the analysis of some of the algorithms in Sections 6.6,
6.7. Many of the results surveyed in Sec. 5 critically depend on the CFSG. On the other
hand, some results of graph theoretic nature have played a role in the classification theory
itself, as illustrated in Sections 3.5 and 5.1.

In spite of these connections, the treatment of the subject will mostly be kept on an
elementary level, requiring little more than basic group theory. The main theme of Sec. 3
is the surprisingly strong effect of modest symmetry assumptions on the combinatorial
parameters of a graph.

We try also to illustrate some of the links of the subject to areas not immediately seen
to relate to groups. Sections 1.6, 7.2 illustrate this point within combinatorics. Several
connections to topology are explored in Section 3 (see esp. Sections 3.6 and 3.7). Random
walks feature in Sec. 3.8; linear algebra is visited briefly in Sections 1.5, 3.8, 3.12, 7.2.
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Strong links have been forged to model theory (Sec. 5.3) and to the theory of algorithms
(Sec. 6.6, 6.7). Some of the remote sources of motivation include algebraic topology
(Sec. 3.11), differential geometry (Secs. 3.6, 3.7), and even a classical discovery in quantum
mechanics (Sec. 1.5).

0.2 Isomorphisms, categories, reconstruction

Isomorphisms of graphs are bijections of the vertex sets preserving adjacency as well as
non-adjacency. In the case of directed graphs, orientations must be preserved; in the case
of graphs with colored edges and/or vertices, we agree that colors, too, must be preserved.
Similar definitions apply to hypergraphs. In the case of incidence structures consisting of
“points” and “lines”, linked by incidence relations, we think of an isomorphism as a pair of
bijections (one between the points, another between the lines), so that the pair preserves
incidence. This view should be applied to graphs as well if multiple edges are allowed.

Automorphisms of the graph X = (V,E) are X → X isomorphisms; they form the
subgroup Aut(X) of the symmetric group Sym(V ). Automorphisms of directed graphs,
etc., are defined analogously.

The questions of reconstruction are, broadly speaking, questions of invertibility of cer-
tain isomorphism preserving operations on structures. A category in which all morphisms
are isomorphisms is called a Brandt groupoid. Let C, D be two Brandt groupoids and
F : C → D a functor. Hence X ∼= Y implies F (X) ∼= F (Y ). We call F weakly re-
constructible if the converse also holds: F (X) ∼= F (Y ) implies X ∼= Y . We say that
F is strongly reconstructible if for every pair X, Y of objects of C, F induces a bijec-
tion between the sets Iso(X, Y ) and Iso(F (X), F (Y )) of isomorphisms. In this case,
Aut(X) ∼= Aut(F (X)) for every object X. We also say that, within the class C, the
object X is (weakly, strongly) reconstructible from F (X).

A classical example is the reconstructibility of a multiset of direct irreducible finite
groups from their direct product (unique direct factorization, R. Remak – O. Yu. Schmidt,
cf. Baer [Bae47]). The category C consists of the multisets of direct irreducible finite groups
with the natural notion of isomorphism. Let F associate the direct product of the members
of such a multiset X with X. This functor is weakly but not strongly reconstructible. (To
see the latter, consider the pair {Zp,Zp}.)

Homomorphisms of graphs are defined as adjacency preserving maps, i.e., a map
f : V1 → V2 is a homomorphism of the graph X1 = (V1, E1) to the graph X2 = (V2, E2) if
(f(x), f(y)) ∈ E2 whenever (x, y) ∈ E1. It is not required that nonadjacency be preserved;
therefore a bijective homomorphism is not necessarily an isomorphism. It is easy to see that
the chromatic number of the graphX is the smallest (cardinal) number m such that the set
Hom(X,Km) of X → Km homomorphisms is nonempty. The set End(X) = Hom(X,X)
forms a monoid (semigroup with identity) under composition: the endomorphism monoid
of X. Aut(X) consists of the invertible elements of End(X). The class of graphs together
with the homomorphisms forms a category. These concepts extend naturally to directed
graphs (orientation of edges must be preserved), graphs with colored vertices and/or edges
(homomorphisms preserve color by definition); and to general relational structures involv-
ing relations of arbitrary arities.
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The interconnections of these areas are manifold. The algorithmic problem of deciding
whether or not two given graphs are isomorphic is equivalent to determining the automor-
phism group, and specific automorphism information for certain classes of graphs made
it possible to use group theory to surprising depth in the analysis of graph isomorphism
algorithms. Isomorphism rejection tools include graph invariants, i. e., functions F such
that X ∼= Y implies F (X) = F (Y ). The construction of combinatorial, algebraic, and
topological structures with prescribed automorphism groups and endomorphism monoids
usually amounts to constructing strongly reconstructible functors. Reconstruction itself
is an isomorphism problem, and automorphism groups have played a role in its study.
Finally, establishing reconstructibility of certain functors is a useful tool in determining
the automorphism groups of certain derived structures.

1 Definitions, examples

In this section, we collect some illustrative facts about automorphism groups of graphs
and their interplay with reconstruction type problems.

We start with the simplest examples. A graph and its complement have the same
automorphisms. The automorphism group of the complete graph Kn and the empty
graph Kn is the symmetric group Sn, and these are the only graphs with doubly transitive
automorphism groups. The automorphism group of the cycle of length n is the dihedral
group Dn (of order 2n); that of the directed cycle of length n is the cyclic group Zn (of
order n). A path of length ≥ 1 has 2 automorphisms. The automorphism group of a
graph is determined by the automorphism groups and the isomorphisms of its connected
components: if X1, . . . , Xk are pairwise nonisomorphic connected graphs, and X is the
disjoint union of mi copies of Xi, i = 1, . . . , k, then

Aut(X) = Aut(X1) ≀ Sm1
× · · · × Aut(Xk) ≀ Smk

. (1)

The wreath products occurring here realize their imprimitive action (cf. Chap. 12).

1.1 Measures of symmetry

A graph is vertex-transitive if its automorphism group acts transitively on the set of
vertices. Such a graph is necessarily regular; the union of a 3-cycle and a 4-cycle show
that the converse does not hold. If the group acts transitively on edges, the graph is edge-
transitive. A vertex-transitive graph need not be edge-transitive. (Example: triangular
prism.) If X is an edge-transitive graph without isolated vertices, and X is not vertex-
transitive, then it must be bipartite, with the group acting transitively on each color
class. The complete bipartite graphs Km,n with m 6= n show that this can indeed happen.
Regular graphs with edge but not vertex-transitive automorphism groups are not so easy
to construct (cf. [Fol67, Bou69, Bou72, Tit75, Kli81]).

A flag in a graph X is an ordered pair (v, e) where v is a vertex and e is an edge
incident with v. If Aut(X) is transitive on flags then X is flag-transitive. This means
transitivity on the set of ordered pairs of adjacent vertices. For graphs without isolated
vertices, flag-transitivity implies both vertex and edge-transitivity. Again, the converse is
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false (cf. [Hol81, Cam83]). If, however, X has odd degree, then vertex and edge-transitivity
imply flag-transitivity.

A graph X is vertex-primitive if AutX is a primitive group. Vertex-primitivity by
definition implies vertex-transitivity, but it does not imply edge-transitivity. (Take a cycle
of prime length p ≥ 7 and add all chords of length 2). For a graph X, let X(t) denote
the graph obtained by joining a pair of vertices of X if their distance in X is t. If X
is vertex-primitive and not empty then X(t) is connected for every t ≤ diam(X). In
particular, nonempty bipartite graphs X of order ≥ 3 are never vertex-primitive (since
X(2) is disconnected).

A graph is distance-transitive if Aut(X) is transitive on the set of ordered pairs of
vertices at distance t for every t ≤ diam(X). Nice examples are the Platonic solids
(Figure 1 in Chap. 1, Sec. 1), Heawood’s, Petersen’s, and Coxeter’s graphs (Figures 4,8,9
in Chap. 1, Secs. 1 and 4).

Vertex-primitivity is a very severe restriction on the automorphism group, as seen by
the following deep result previously known as the “Sims conjecture” [Sim67].

Theorem 1.1. (Cameron, Praeger, Saxl, Seitz [CPSS83]) There exists a func-
tion f such that if a vertex-primitive digraph has out-degree k then the vertex-stabilizer
in the automorphism group has order ≤ f(k).

This result immediately implies that there is only a finite number of vertex-primitive
distance-transitive graphs of any fixed degree. However, this second statement remains
valid even without the vertex-primitivity condition (see Section 5.2).

The automorphism group of a finite tournament T has odd order, since otherwise it
would contain an involution (an element of order two), which would then illegally reverse at
least one edge. This harmless looking observation implies, by the Feit-Thompson Theorem,
that Aut(T ) is solvable, a fact with far reaching consequences, including algorithmic ones
(cf. the end of Sec. 6.6). Here we state an immediate corollary (cf. Chap. 12 for the
definitions).

Proposition 1.2. Let T be a tournament with n vertices. (a) If T is vertex-transitive
then n is odd. (b) If T is vertex-primitive then n is an odd prime power.

Proof: Part (a) is straightforward: the in- and out-degrees must be equal. As for part
(b), let N be a minimal normal subgroup of Aut(T ). Then N is transitive (since Aut(T )
is primitive); it is abelian (since Aut(T ) is solvable); and it is characteristically simple (i.e.
the direct product of isomorphic simple groups) (since it is minimal). Therefore N ∼= Zk

p

(k ≥ 1, p prime). A transitive abelian group being regular, we conclude that n = |N | = pk.
(We note that T is a Cayley digraph of N .) 2

While there is no hope to classify all flag-transitive graphs, a simple description of all
edge-transitive tournaments exists. (For directed graphs, edge- and flag-transitivity mean
the same.) Let q = pk be an odd prime power, q ≡ −1 (mod 4). The Paley tournament
P (q) has the field GF (q) for its vertex set; an edge goes from x to y (x 6= y) if x − y is
a square. The group of affine transformations x 7→ ax + b (a, b ∈ GF (q), a 6= 0 a square)
acts transitively on the edges of P (q).
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Theorem 1.3. (Kantor [Kan69]) (a) Every edge-transitive tournament with n > 2
vertices is Paley. (b) Aut(P (q)) consists of the affine semilinear transformations x 7→
axα + b where a, b ∈ GF (q), a 6= 0 is a square, and α : x 7→ xpj

(0 ≤ j ≤ k − 1) is an
automorphism of GF (q).

Proof: Let T be edge-transitive. Since n > 2, T must be vertex primitive and therefore
n = pk, p an odd prime. The stabilizer of a vertex x acts transitively on the tournament
induced by the (n−1)/2 out-neighbors of x; hence n ≡ −1 (mod 4). Let N be a minimal
normal subgroup of G = Aut(T ); then, as before, N can be identified with the vertex set
of T . Let τ : x 7→ x−1 (x ∈ N); then τ is an antiautomorphism of T (reverses every edge).
Therefore G has index 2 in the doubly transitive group H = 〈G, t〉. All solvable doubly
transitive groups have been determined by Huppert (cf. [Hup57]); apart from a finite
number of exceptions of degrees 32, 52, 72, 112, 232, 34, they all are subgroups of the group
ΓA1(p

k) of semiaffine (affine semilinear) transformations of GF (pk). The exceptional cases
are ruled out because k must be odd (since n ≡ −1 (mod 4)). This, in particular, proves
part (b). Aut(P (pk)) is the unique subgroup of index 2 in ΓA1(p

k), hence G ≤ Aut(P (pk)).
Since both G and Aut(P (pk)) have rank 3 (cf. Chap. 12), either T or its converse agrees
with P (pk), which is self-converse. 2

The rth residue digraph P (q, r) is defined for prime powers q and integers r ≥ 2 such
that r|(q − 1). The vertex set of P (q, r) is GF (q); an edge joins x to y if x − y is a rth

power in GF (q). This digraph is undirected if either q or (q − 1)/r is even. (The Paley
graphs are the quadratic residue graphs (r = 2; q ≡ 1 (mod 4)). The Clebsch graph
is P (16, 3).) The affine linear group A1(q) is flag-transitive on P (q, r). It is not true in
general that Aut(P (q, r)) is semiaffine; e.g. if q = q2

0 and r = q0 + 1 then P (q, r) is a
disjoint union of cliques; if q = q4

0 and r = q0 + 1, then the neighbors of 0 form a quadric
and the graph admits the orthogonal group. However, the Paley graphs have semiaffine
automorphism groups. This is a consequence of the following theorem of Carlitz [Car60]
and McConnel [McC63] : Let q be a prime power, r|q− 1, and let f be a map of GF (q) to
itself such that for every x, y ∈ GF (q), x 6= y, the element (x − y)−1(f(x) − f(y)) is an
rth power. Then f is semiaffine. (See also [BL73b].)

A stronger result holds when q is a prime.

Theorem 1.4. If X is an edge-transitive regular graph of prime order without isolated
vertices then X is either complete or an rth residue graph for some r|(p − 1)/2. In the
latter case, Aut(X) = A1(q).

Proof: X cannot be bipartite (p is odd), hence it is vertex-transitive and (being a Cayley
graph of the abelian group Zp, cf. Cor. 3.6), in fact, flag-transitive. Let G = Aut(X) ≤ Sp.
If G is not solvable, then it is doubly transitive (cf. [Bur11]; cf. also [Hup67, p.609]), hence
X is complete. If G is solvable then G ≤ A1(p) (Galois; see Huppert[Hup67, p.163]). A
glance at the structure of A1(p) completes the proof. 2

Graphs with higher degrees of symmetry will be discussed in Section 5. Distance-
transitive graphs have been defined above. We define another important class here.
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An s-arc in a graph is a sequence (x0, . . . , xs) of vertices such that: (a) xi−1 and xi are
adjacent; (b) xi−1 6= xi+1. — The graph X is s-arc-transitive, if Aut(X) acts transitively
on the set of s-arcs. (Note: 1-arc-transitivity is the same as flag-transitivity.) Distance-
transitivity implies ⌊g/2⌋-arc-transitivity, where g is the girth.

Often we are interested in the action of some subgroup G ≤ Aut(X) on vertices,
edges, flags, etc. If this action is transitive (regular), we say that G is vertex-transitive
(vertex-regular, resp.), etc., on X.

Graphs with relatively low degrees of symmetry are easy to construct. Every Cayley
graph (see Section 2) is vertex transitive. There is an abundance of edge-transitive digraphs
and even of 2-arc-transitive graphs, as indicated by the following result. A map f :
(V,E) → (W,F ) between two finite digraphs is a k-fold covering if f is a homomorphism
(maps vertices to vertices, edges to edges, and preserves incidences); every vertex and edge
of (W,F ) has exactly k preimages; and f is a local isomorphism, i.e. x and f(x) have the
same indegree (out-degree, resp.) for every x ∈ V .

Theorem 1.5. ([Bab85]) (a) Every finite regular digraph has infinitely many edge-
transitive finite covering digraphs with the same number of connected components. (b)
Every finite regular graph has infinitely many 2-arc-transitive finite covering graphs with
the same number of connected components.

It follows by a result of Godsil [God82] that the minimal polynomial of every digraph
divides that of an edge-transitive digraph, hence the adjacency matrices of infinitely many
edge-transitive digraphs are not diagonalizable.

Although graphs with higher symmetry are much more difficult to construct (cf. Sec.
4), covering graphs are helpful in moving from an isolated example to infinitely many.

Theorem 1.6. ([Big74, Ch. 19]) A finite connected s-arc-transitive graph has infinitely
many finite connected s-arc-transitive covering graphs.

1.2 Reconstruction from line graphs

We illustrate the point made in the last sentence of the introduction by a classical example.

Theorem 1.7. (Whitney [Whi32]) Connected graphsX with ≥ 5 vertices are strongly
reconstructible from their line graphs L(X) (within the class of all graphs).

(Whitney proved the result for finite graphs; it was extended to infinite graphs by
Bednarek [Bed85], using Rado’s selection principle (Chap. 42, Sec. 3).) In other words,
every isomorphism L(X) → L(Y ) is induced in the natural way by a unique isomorphism
X → Y (cf. Lovász [Lov79a, p.507]). This, in particular, means that if the connected
graph X has at least 5 vertices then Aut(X) ∼= Aut(L(X)).

Corollary 1.8. Let P denote the Petersen graph. (a) Aut(P ) ∼= S5. (b) P is distance
transitive and 3-arc-transitive.
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Proof: The complement of P is L(K5). 2

One can generalize this result to the Kneser graphs KG(n, r) (n ≥ 2r+1). Recall that
the vertex set of KG(n, r) is the set of r-subsets of an n-set; disjoint subsets correspond
to adjacent vertices.

Proposition 1.9. (a) For n ≥ 2r + 1, Aut(KG(n, r)) ∼= Sn.
(b) KG(n, r) is distance-transitive.
(c) The “odd graph” Ok = KG(2k − 1, k − 1) is exactly 3-arc-transitive.

For the proof of part (a), we have to consider a reconstruction problem for hypergraphs.
The line graph L(H) of the hypergraph H = (V,E) has vertex set E; two members of
E are adjacent in L(H) if they intersect. — For a set A, let [A]r denote the complete
r-uniform hypergraph on A, consisting of all r-subsets of A. The Kneser graph KG(n, r) is
the complement of L([A]r) where |A| = n. Part (a) of Proposition 1.9 is thus an immediate
consequence of the next observation.

Proposition 1.10. (Berge, Fournier [Ber72, Fou74]) The complete r-uniform hy-
pergraphs with ≥ 2r + 1 vertices are strongly reconstructible from their line graphs.

Proof: By the Erdős-Ko-Rado Theorem (see Chap. 24), the largest cliques of L([A]r)
are in one-to-one correspondence with the elements of A. This guarantees that every
isomorphism L([A]r) → L([B]r) is induced by a bijection A→ B. 2

This is a special case of the following sufficient condition of reconstructibility.

Theorem 1.11. (P.L. Erdős, Z. Füredi [EF80]) Let H be an r-uniform hypergraph
on n vertices. If n ≥ 2r + 1 and every vertex of H has degree greater than

v(n, r) =

(
n− 1

r − 1

)
−

(
n− r − 1

r − 1

)
+ 1,

then H is strongly reconstructible from L(H).

The degree bound v(n, r) is tight for every r ≥ 2 and n > 2r2. The quantity v(n, r)
comes from the Hilton–Milner theorem (Chap. 24, Theorem 5.8). In the particular case
when all pairs of edges intersect in at most one point, the bound of Theorem 1.11 can be
greatly improved.

Theorem 1.12. Let H be an r-uniform hypergraph on n vertices such that every pair
of edges intersects in at most one point. If every vertex of H has degree greater than
r2 − r + 1, then H is strongly reconstructible from L(H).

The proof follows immediately from Deza’s Theorem [Dez73] (cf. [Lov79a, Probl. 13.17]):
If every pair of edges of an r-uniform hypergraph H = (V,E) has exactly λ points in com-
mon then either H is a sunflower (all edges have the same λ points in common), or
|E| ≤ r2 − r + 1.
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Corollary 1.13. Let S, S1 and S2 be Steiner triple systems of order ≥ 15. Then: (a)
Aut(L(S)) ∼= Aut(S). (b) If S1 6∼= S2 then L(S1) 6∼= L(S2).

We shall use part (a) of this corollary to construct strongly regular graphs with ar-
bitrary prescribed automorphism groups (Theorem 4.3). Part (b) implies the existence
of a large number of isospectral graphs: nonisomorphic graphs with the same characteris-
tic polynomial. The existence of such families shows that the characteristic polynomial,
though a useful invariant of graphs, is far from complete. (A complete invariant F (X) is
one from which X is (weakly) reconstructible.)

Corollary 1.14. For infinitely many values of n, there exists a set of n
1

2
n(1+o(1)) isospec-

tral graphs on n vertices.

Indeed, the parameters of the strongly regular graph L(S) (Chap. 15) and therefore
its spectrum are uniquely determined by the number of vertices n = v(v − 1)/6, where v
is the number of vertices of the Steiner triple system S. The estimate of the number of
Steiner triple systems required, v

1

6
v2(1+o(1)), is due to Alekseiev [Ale74] and R.M. Wilson

[Wil74], combined with van der Waerden’s Permanent Conjecture (now the theorem of
Egorychev and Falikman (see Chap. 22, Sec. 16.1).

A more direct proof of Corollary 1.14 (also based on the Permanent Conjecture) uses
Latin Square graphs (LSG’s). The LSG associated with a k× k Latin square (LS) (Chap.
14) has k2 vertices corresponding to the cells of the Latin square; two cells are adjacent
in the graph if they are in the same row, or in the same column, or they have the same
entry. For k ≥ 5, the only k-cliques in an LSG are those corresponding to rows, columns,
and identical entries. From this it is easy to deduce that (for k ≥ 5) the LS is strongly
reconstructible from its LSG. (Isomorphisms of Latin squares have to be defined carefully:
row indices, column indices, and entries play interchangeable roles; so the automorphism
group is a subgroup of Sk ≀ S3.)

1.3 Automorphism groups: reduction to 3-connected graphs

Probably the first nontrivial class of graphs of which the automorphism groups have been
studied are finite trees (Jordan, 1869). The first observation is that every tree has a center,
which is either a vertex or an edge and is fixed under every automorphism. This reduces
the problem to rooted trees (the root is fixed by definition). Automorphism groups of
rooted trees can be determined recursively: delete the root, designate its neighbors to
be roots of the remaining branches, and apply formula (1) to the forest of rooted trees
obtained. The conclusion:

Proposition 1.15. (Jordan, 1869) The finite group G is isomorphic to the automor-
phism group of a finite tree if and only if G ∈ W, where the class W of finite groups is
defined inductively as follows: (a) {1} ∈ W; (b) if G,H ∈ W then G × H ∈ W; (c) if
G ∈ W and m ≥ 2 then G ≀ Sm ∈ W.
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In fact, not only the abstract group structure but the permutation action of the auto-
morphism groups of trees can be deduced from these considerations. The action defined
by the result occurs on the leaves of the tree.

Using the block-cutpoint tree T of a 1-connected graph X, similar considerations re-
duce the determination of Aut(X) to the automorphism groups of its blocks via a slight
generalization of wreath products. If the root of T is a cutpoint, we split it and combine,
via eqn. 1, the groups of the (rooted) components. If the root is a block, we assign colors
to the vertices of that block to indicate the isomorphism type of the incident branch; ap-
ply an arbitrary color preserving automorphism to the block, and move the branches in a
wreath-product-like fashion (Robinson [Rob70]).

A canonical decomposition of 2-connected graphs to their 3-connected “components”
also exists.

We briefly indicate the idea. Let us call a multigraph basic if it is either 3-connected or
a cycle or it has just two vertices and a set of ≥ 2 parallel edges between them. A “bipolar
multigraph” is a multigraph with two distinct specified endpoints. A bipolar multigraph is
basic if it becomes a basic multigraph after adding a new edge joining the two endpoints.

Let us now take a basic graph, and repeat the following construction: simultaneously
replace every edge by a basic bipolar multigraph.

The result is that every 2-connected graph arises in a canonical way in this manner.
Canonicity means that all isomorphisms between two 2-connected graphs induce isomor-
phisms of each corresponding level of this construction (and in particular it induces an
isomorphism of the rooted trees representing the hierarchy of the basic graphs used).

Such a canonical hierarchy of basic graphs is referred to as the decomposition to 3-
connected components.

A generalization of wreath products [Bab75] allows a description of the automorphism
group of a 2-connected graph in terms of the automorphism groups of its 3-connected
components with the edges of these components colored and oriented appropriately.

A very efficient (linear time) algorithm for the canonical decomposition to 3-connected
components was given by Hopcroft and Tarjan using breadth-first search [HT73]; a paral-
lelizable algorithm was found by Miller and Ramachandran [MR92].

Problems of great depth arise in the study of the automorphism groups of infinite trees.
Tits [Tit70]) studied the full automorphism groups of (vertex-colored) trees. Groups acting
on trees without inverting an edge have been characterized by H. Bass and J.-P. Serre.
This theory will be touched upon in Sections 3.7 and 3.11.

1.4 Automorphism groups of planar graphs

Finite planar graphs form one of the few comparatively rich classes of graphs of which the
automorphism groups have been satisfactorily determined, both from the algebraic (Babai
[Bab75]) and the algorithmic (Hopcroft, Tarjan [HT72]; Hopcroft, Wong [HW74]) points
of view.

Every finite group of isometries of the Euclidean 3-space has a fixed point and can
therefore be identified with a group of isometries of the 2-sphere. Every sense-preserving
transformation is a rotation, and every sense-reversing transformation is a rotary inversion,
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i.e. a rotation followed by a central inversion.
There are two infinite families and 3 sporadic examples of finite rotation groups of the

2-sphere: the rotation groups of the regular k-gonal pyramids (the cyclic group Zk), the
regular k-gonal prisms (the dihedral group Dk), the tetrahedron (the alternating group
A4), the cube (S4), and the dodecahedron (A5) (see the Figures in Chap. 1, Sec. 1). The
list is understood to include the degenerate cases k ≤ 2.

The finite isometry groups of the 2-sphere, other than the rotation groups, can be
obtained in one of two ways as follows. Each rotation group G can be extended to G∪Gτ ∼=
G × Z2 where τ = −I is the central inversion. Moreover, if G is a rotation group with a
subgroup H of index 2, then the group G∗ = H∪(G\H)τ is another isometry group. Note
that G∗ ∼= G, but the geometric realization is different: for instance, from the rotation
group of the cube we obtain the full isometry group of the tetrahedron. (See e.g. Fejes-Tóth
[FT65], Coxeter [Cox61].)

Theorem 1.16. Every 3-connected planar graph X has an embedding on the sphere such
that all automorphisms are realized by isometries of the sphere.

This is a consequence of Whitney’s theorem [Whi32] that 3-connected planar graphs
are uniquely embeddable on the 2-sphere (cf. Chapter 2), combined with the fact that
all finite homeomorphism groups of the 2-sphere are topologically equivalent to a group
of isometries (Kerékjártó [Ker21]; Eilenberg [Eil34]). A stronger version of Theorem 1.16
was obtained by P. Mani:

Theorem 1.17. (Mani [Man71]) Every 3-connected planar graph X can be realized as
the 1-skeleton of a convex polytope P in R3 such that all automorphisms of X are induced
by isometries of P .

Polyhedral groups are the isometry groups of convex polytopes and their subgroups.
Viewed in their action on R3, they coincide with the finite isometry groups listed above.
Either of the above results, combined with the reduction process indicated in the previous
section, yields a description of the automorphism groups of planar graphs in terms of
generalized wreath products of symmetric groups and polyhedral groups. Two easily
stated consequences: If X is planar then AutX has a subnormal chain Aut(X) = G0 ⊲
G1 ⊲ · · · ⊲ Gm = 1 such that each quotient group Gi−1/Gi is either cyclic or symmetric or
A5. If X is 2-connected and |Aut(X)| is odd then Aut(X) is cyclic (Babai [Bab75]). We
conjecture that the first of these statements remains valid for graphs embeddable on an
arbitrary fixed surface Σ (cf. Chap. 5) with A5 replaced by a finite list, depending on Σ
(cf. Babai [Bab73, Bab74a]).

1.5 Matrix representation. Eigenvalue multiplicity

A mechanical system is often represented by a self-adjoint operator A; and its symmetries
by a group G of unitary operators (acting on a real or complex Hilbert space H). The
fact of symmetry is expressed by the equation AP = PA for each P ∈ G. If H has finite
dimension (or more generally, its spectrum is discrete), then it is the orthogonal direct
sum of the eigensubspaces Hλ = {u ∈ H : Au = λu} for all eigenvalues λ of A.
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If the operators B and C commute, then the eigensubspaces of B are invariant sub-
spaces for C. In particular, one can refine the decomposition H =

∑⊕Hλ to an orthogonal
decomposition into subspaces, irreducible under the action of G. This way each irreducible
constituent of G falls into an eigensubspace, forcing “degeneracies” (multiple eigenvalues)
to occur, and more importantly, the vectors in an orthonormal base of H are classified
according to the irreducible constituents of G. This approach, introduced in a seminal
1927 paper of Eugene P. Wigner [Wig27] has since been used extensively both in classical
and in quantum mechanics (cf. Wigner [Wig59], Hamermesh [Ham62]). The classifica-
tion of eigenvibrations of molecules using the character tables of their symmetry groups
(also due to Wigner, cf. Schonland [Sch65]) is particularly instructive because in this case
dimH <∞ and the matrix A is a variant of the “adjacency matrix of the molecule”.

Let now X denote a graph with edges weighted with real numbers; and let A be
its adjacency matrix; so the entry ai,j is the weight of the edge {i, j}. Then A is a
symmetric real matrix which acts on the space H = Rn (n is the number of vertices). The
automorphisms of A are represented by precisely those permutation matrices P which
commute with A.

Reversing Wigner’s approach, we shall indicate how to use spectral information on A
to infer properties of the group G = Aut(X). Let λ1, . . . , λm be the eigenvalues of A;
let mi be the multiplicity of λi (

∑
mi = n). Let Gi denote the restriction of G to the

eigensubspace Hλi
. Then G is a subdirect product of the Gi. (A subdirect product is a

subgroup of the direct product which projects onto each factor.) This proves part (a) of
the following result.

Theorem 1.18. Let G = Aut(X) for an edge-weighted graph X with eigenvalue multi-
plicities m1 ≤ . . . ≤ mt. (a) [God78] G is the subdirect product of groups G1, . . . , Gt,
where Gi is a subgroup of the orthogonal group O(mi); (b) [God78] |Gi| ≤ nmi ; (c)
[God78] if X is vertex-primitive then |G| ≤ nm2 ; (d) [BGM82] if X is vertex-transitive
then |G| ≤ nmt−1 ; and more generally, the restriction of G to any of its orbits has order
≤ nmt−1 .

To see part (b), let S be the projection of the trivial basis of H = Rn to Hλi
; and let

S ′ ⊆ S be a base of Hλi
. Then each member of Gi is determined by its restriction to S ′

which is a map S ′ → S. The number of such maps is ≤ nmi . Part (c) follows by observing
that the projection of the V to each eigensubspace defines an invariant partition of V .
Hence if X is vertex-primitive of degree d ≥ 1 then this partition must be trivial and
G acts faithfully on each eigensubspace of dimension 6= 1. But the only one-dimensional
eigensubspace of a vertex-transitive graph is the one corresponding to λ = d. Part (d)
is less immediate; an algorithmic version of it is used in [BGM82] to deduce an nm+O(1)

algorithm for testing isomorphism of graphs with eigenvalue multiplicity bounded by m.
Part (a), too, has some appealing consequences. Let m = mt be the maximum mul-

tiplicity of eigenvalues. Noting that O(1) ∼= Z2, we see that if all eigenvalues of a graph
are distinct, then its automorphism group is an elementary abelian 2-group (Mowshowitz,
Petersdorf–Sachs, 1969, cf. [CDS80]). Further, if m ≤ 3 then Aut(X) is solvable. This is
immediate for m = 2 since every finite subgroup of O(2) is cyclic or dihedral; but among
the finite subgroups of O(3), there are two nonsolvable ones: the group of rotations of the
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icosahedron (∼= A5) and its full group of congruences (∼= A5 × Z2). These were ruled out
by Cameron [Cam83] via a closer look at the characters of A5. 2

Our last remark concerns factors of the characteristic polynomial. Let G ≤ Aut(X)
for some weighted digraph X and consider the weighted quotient graph Y = X/G. The
vertices of X/G are the orbits of G; the weight of the directed edge (A,B) of Y is the sum
of weights of all edges (u, v) for some fixed u ∈ A over all v ∈ B. It is easy to see that the
characteristic polynomial of Y divides that of X. In particular, if the characteristic poly-
nomial of a digraph X is irreducible then X is asymmetric (|Aut(X)| = 1) (Mowshowitz,
cf. [CDS80]).

1.6 Asymmetry, rigidity. Almost all graphs. Unlabelled count-

ing

An excellent exposition of the subject of this section is given by Bollobás [Bol85, Ch. IX].
A graph is called asymmetric if it has no nontrivial automorphisms; it is called rigid if

it has no nontrivial endomorphisms. (Some authors use the term “rigid” to describe what
we call asymmetric.) Construction of asymmetric or rigid graphs and other structures
with given properties is often the basis of the construction of such structures with given
automorphism group or endomorphism monoid, resp. (Cf. Sec. 4.1.) A notable result in
this area is that there exists a rigid graph on every infinite vertex set (Vopenka, Pultr,
Hedrlin [VPH65], cf. [HL69]). Finite rigid graphs exist on n vertices for any n ≥ 10
[HP65]; asymmetric graphs exist for n ≥ 6. Asymmetry/rigidity is actually the typical
behaviour of finite graphs. It was proved by Pólya [Pól37], Erdős and Rényi [ER63] that a
random graph is asymmetric with probability 1−

(
n
2

)
2−n−2(1 + o(1)). The dominant part

of the error-term comes from the graphs which admit a transposition automorphism (a
pair P of vertices with identical neighborhood outside P ). The asymptotic expansion can
be continued to include terms describing the probabilities of automorphisms with bounded
supports. A strong algorithmic version of this result will be mentioned in Sec. 6.4.

It is not difficult to upgrade the proof to yield that almost all graphs are rigid. In this
case the error term is O(n2(3/4)−n), dominated by the possiblity that the neigborhood
of some vertex v includes the neighborhood of some vertex w, allowing an endomorphism
w 7→ v while fixing all other vertices.

Although n-vertex asymmetric trees exists for every n ≥ 7, random trees are typically
not asymmetric. Indeed for any finite rooted tree T , almost all labeled trees have T as a
limb (Schwenk [Sch73]). In particular, large numbers of cherries (pairs of pendant vertices
with a common neighbor) occur almost always.

Nontrivial trees (and more generally, bipartite graphs, and indeed perfect graphs) are
never rigid (they can be mapped to their largest clique).

E. M. Wright refined the “almost sure asymmetry” results to show that asymmetry is
typical for graphs with density above the connectedness threshold (cf. Chap. 6):

Theorem 1.19. (Wright [Wri71]) Let m(n) = 1
2
n lnn+nψ(n). Then the probability

that a random graph with n vertices and m(n) edges is asymmetric tends to 1 if ψ(n) → ∞
assuming m(n) ≤ 1

2

(
n
2

)
; and this probability tends to 0 if ψ(n) → −∞.
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The reason of the second statement is obvious: those graphs have, with probability ap-
proaching 1, an unbounded number of isolated vertices. If we rule out this possibility, even
sparser graphs will be typically asymmetric: for fixed r ≥ 3, the probability that a random
r-regular graph is asymmetric tends to 1 (Bollobás [Bol82], McKay and Wormald [MW84],
[Wor86]).

The results establishing “almost always asymmetry” mentioned above are valid for
labeled as well as for unlabeled graphs; the latter is a substantially stronger statement with
important consequences to counting unlabeled objects. We shall formalize the connection
below.

Let C be a class of finite graphs (or digraphs, or other structures), closed under isomor-
phisms, and let C(n) be the set of those members of C with vertex set [n] = {1, . . . , n}. Let
P be a graph property (i.e. an isomorphism-closed class of graphs). We say that “almost
all labeled members of C have property P” if limn→∞ |P ∩ C(n)|/|C(n)| = 1. The term
“almost all unlabeled members of C” is used analogously except that isomorphism classes
rather than individual graphs are counted. This annoying distinction disappears if almost
all unlabeled members of C are asymmetric: under this condition, any graph property will
hold for almost all unlabeled members of C if and only if it holds for almost all labeled
members.

The statement that “almost all unlabeled members of C are asymmetric” is equivalent
to the following:

“the expected number of automorphisms of a random (2)

labeled member of C is 1 + o(1).”

This equivalence follows from the observation that the number of unlabeled graphs (isomor-
phism classes) in C(n) is exactly |C(n)|α(n)/n!, where α(n) =

∑
X∈C(n) |Aut(X)|/|C(n)| is

the expected order of the automorphism group of a random labeled member of C. (This
follows from the Orbit Counting Lemma, a.k.a. “Burnside’s Lemma”, see Chap. 21,
Lemma 14.3.)

By the results mentioned, (2) is valid for the class of all graphs, for graphs with m(n)
edges as in Wright’s theorem (ψ → ∞), as well as for regular graphs of given degree r ≥ 3.

Structures satisfying stronger regularity constraints are often difficult to count. It
seems likely, for instance, that almost all strongly regular graphs are asymmetric, but this
may be difficult to prove. It has been shown, however, that almost all (unlabeled) members
of the following two classes of strongly regular graphs are asymmetric: the line graphs of
Steiner triple systems, and the Latin square graphs (cf. Sec. 4.1) [Cam], [Bab79a].

While almost all graphs are asymmetric, one might be interested in what can be said
about the graphs known to admit some automorphisms. Related questions will be consid-
ered in Sections 4.3 and 4.4; here we mention a result of P. J. Cameron [Cam80b].

Theorem 1.20. (Cameron) For a finite group G let C(G) be the class of those graphs
X admitting a group isomorphic to G as a subgroup of Aut(X). Let an(G) denote the
proportion of those n-vertex labeled members of C which have Aut(X) ∼= G. Then (i) the
limit a(G) := limn→∞ an(G) always exists and is rational; (ii) a(G) = 1 iff G is the direct
product of symmetric groups; (iii) for infinitely many groups, including all abelian groups
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with exponent ≥ 3, a(G) = 0; (iv) For metabelian groups, the values of a(G) are dense in
[0, 1].

While almost all finite graphs are asymmetric, the situation changes to its opposite
when we consider countably infinite graphs. Let us generate a random graph on a count-
ably infinite vertex set by deciding independently and with probability 1/2 whether or
not to join two vertices. Then with probability 1, we obtain a graph isomorphic to one
specific graph, R, the Rado graph [ER63], discussed in Sec. 5.3. We should mention that
|Aut(R)| = 2ℵ0, and “almost all” automorphisms of R are conjugates (cf. Theorem 3.17).

More generally, the number of automorphisms of a countable graph (or any countable
structure over a locally finite language, cf. Sec. 5.3) is always finite, countable, or 2ℵ0 . A
countable graph (structure) X has 2ℵ0 automorphisms if and only if every finite subset of
V (X) is pointwise fixed by some nontrivial automorphism.

2 Graph products

In this section we introduce the most important graph products, indicate their combina-
torial significance, and address their automorphism and factoring problems.

Given two graphs Xi = (Vi, Ei) (i = 1, 2), a product graph Y = (W,F ) = X1 ∗X2 can
be defined in a variety of sensible ways. Those four which appear most frequently in the
literature are the lexicographic, the Cartesian, the categorical, and the strong products. In
each case, W = V1×V2 (Cartesian product). Each of the products is associative, and three
of the four are commutative in the sense that the map (v1, v2) 7→ (v2, v1) is an isomorphism
between X1 ∗X2 and X2 ∗X1. (The lexicographic product is not commutative.) The 1-
vertex graph is a (two-sided) identity in three cases (exception: the categorical product;
in that case it is natural to admit loops and the one-vertex graph with a loop becomes
the identity). We say that a graph P is a prime with respect to a product and a class C
of graphs if P is not isomorphic to the product of two non-identity graphs within C and
is not itself the identity.

Next we define the adjacency relation in each product. Let ui, vi ∈ Vi and (i = 1, 2)
w = (u1, u2), z = (v1, v2) ∈W . Then w and z are adjacent (a) in the lexicographic product
Y = X1[X2] if either (u1, v1) ∈ E1 and u2 6= v2, or u1 = v1 and (u2, v2) ∈ E2; (b) in
the Cartesian product Y = X1 × X2 if either u1 = v1 and (u2, v2) ∈ E2 or u2 = v2 and
(u1, v1) ∈ E1; (c) in the categorical product Y = X1 ·X2 if (u1, v1) ∈ E1 and (u2, v2) ∈ E2;
(d) the edge set of the strong product X1⊗X2 is the union of the edge sets of the Cartesian
and the categorical products.

Observe that the n-cube is the Cartesian product of n copies of K2; more generally,
Cartesian products of paths are grids. Hamming graphs can be defined as isometric sub-
graphs of Cartesian products of complete graphs (cf. Graham and Winkler [GW85]).

Categorical products are the products in the category theoretic sense. They give rise
to some of the deepest structural questions (cf. [McK71], [Jón81] ). Strong products, their
close relatives, are tamer in many ways.

Lexicographic products occur naturally in combinatorial constructions; we shall men-
tion examples below.
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Some graph invariants of certain products are easily computed from those of the factors;
others pose important open questions. We mention two of the latter kind. The first one
concerns the chromatic number chr(Y ) of the categorical product Y = X1 ·X2. Since Y has
a homomorphism to each factor, clearly chr(Y ) ≤ min {chr(X1), chr(X2)}. Hedetniemi’s
conjecture asserts that for finite graphs we have equality here (cf. [GL74]). (This is false
for uncountably infinite graphs [Haj85].)

The second problem concerns the independence number α(Y ) of the strong product
Y = X1⊗X2. Clearly α(Y ) ≥ α(X1)α(X2) (supermultiplicativity). Let Xk = X⊗ . . .⊗X
denote the kth strong power of the graph X. Supermultiplicativity implies that the limit
Θ(X) = limk→∞(α(Xk))1/k always exists; this quantity is the Shannon capacity of X
(Chap. 31, Sec. 6; cf. [Knu94]). Its value is unknown even for as simple a graph as C7,
the cycle of length 7. Even the case of C5 was open for decades; it was solved by Lovász
as a special case of the following result: If X is a vertex-transitive self-complementary
graph with n vertices then Θ(X) =

√
n [Lov79b]. (This class includes the Paley graphs

(Sec. 1.1).)
Cartesian products of cycles occur as Cayley graphs of abelian groups. Their genus

has been studied in this context (cf. Sec. 3.9).
Some useful observations regarding the lexicographic product: (1) both the indepen-

dence number α(X) and the clique number ω(X) are multiplicative under lexicographic
products (this fact has a curious application to constructive Ramsey graphs [Abb72]). The
following inequality holds for the chromatic number of the lexicographic product (Linial
and Vazirani) [LV89]:

(chr(X1) − 1) · chr(X2)/ ln |V (X1)| ≤ chr(X1[X2]) ≤ chr(X1) · chr(X2). (3)

Sometimes the study of vertex-transitive graphs reduces to the study of Cayley graphs
via the following observation: If X is vertex-transitive then both X[Km] and X[Km] are
Cayley graphs for a suitable m [Sab64]. (Examples include the study of isoperimetry, cf.
Theorems 3.38, 3.41.

Among the nicely behaved parameters we mention the spectrum. Let {λi} and {µj} be
the multisets of eigenvalues ofX1 andX2, resp. Then {µj + |X2|λi}, {λi + µj}, {λiµj}, and
{λiµj + λi + µj} are the respective multisets of eigenvalues of the lexicographic, Cartesian,
categorical, and strong products. All these products share a base of orthonormal eigenvec-
tors consisting of the pairwise Kronecker products of the orthonormal eigenbases of each
factor. The Kronecker product of the adjacency matrices of X1 and X2 is the adjacency
matrix of their categorical product.

2.1 Prime factorization, automorphism group

Now we turn to the problem of unique prime factorization (UPF). We recommend the
insightful survey by W. Imrich [Imr93] for more detail.

For commutative products of finite graphs, UPF is equaivalent to the common refine-
ment property. We say a graph G has the common refinement property with respect to
a product, if for any two representations

∏
i∈I Ai

∼=
∏

j∈J Bj of G there exist graphs Ci,j

which satisfy Ap
∼=

∏
j∈J Cp,j and Bq

∼=
∏

i∈I Ci,q.
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Let V = V1 × · · · × Vk be a Cartesian product decomposition of the vertex set V . For
v ∈ V , let V v

i denote the set of vertices differing from v in the ith coordinate only. Suppose
this decomposition of V corresponds to a decomposition of the graph X = (V,E) with
respect to some commutative product; and V = W1 × · · · ×Wℓ corresponds to another
decomposition. We say that the strict common refinement property (s. c. r.) holds if the
intersections V v

i ∩W v
j with at least two vertices are exactly the Cv

i,j with respect to the
factors of a common refinement. We say that X has the s. c. r. property w .r. to a certain
product if any pair of product decompositions of X has this property. In this case it
follows that the multiset of prime factors is strongly reconstructible. In particular, X has
UPF X =

∏
Xi and Aut(X) is obtained from Aut(Xi) via equation (1) at the beginning

of Section 1.
For disconnected graphs, UPF does not hold for any of our commutative products, as

seen from the identity (1 + x + x2)(1 + x3) = (1 + x2 + x4)(1 + x). (Plug in a connected
prime graph for x and interpret + as disjoint union.)

2.2 The Cartesian product

The product of connected graphs is connected.
Every connected graph has UPF in a strong sense (Sabidussi [Sab60]) which we now

state. Every Cartesian product decomposition X = Y1 × · · · × Yk of the graph X induces
an equivalence relation σ(Y1, . . . , Yk) on E(G); eqivalent edges correspond to edges of the
same Yi. It turns out that if X is connected then the intersection of two such product
relations is a product relation again. The UPF corresponds to the intersection σX of all
product relations. The strict common refinement property for connected graphs follows
immediately, implying UPF and eqn. (1) for the prime factors.

Several algorithms are known to construct the UPF. The simplest one is due to
Feder [Fed92] and runs in O(mn) (m = |E|, n = |V |). The most efficient algorithm,
found by Aurenhammer, Hagauer and Imrich [AHI92], runs in O(m logn).

Unique prime factorization holds for infinite graphs as well, and extends to the weak
Cartesian product of infinitely many connected graphs (Imrich). For this result and for the
connections between prime factorization and isometric embeddings into Cartesian products
we refer to Imrich [Imr89].

2.3 The categorical product; cancellation laws

First of all we have to admit loops so we at least have an identity graph for this product
(single vertex with a loop). The categorical product of two connected graphs is bipartite
iff at least one of them is bipartite; and it is disconnected iff both factors are bipartite.
Disconnected products cause non-unique prime factorizations; however, the connected
non-bipartite graphs have UPF in the class of graphs with loops [McK71]. However, the
strict refinement property does not hold, not even its consequence, eqn. (1).

A graph is thin if no pair of vertices has precisely the same set of neighbors. All fac-
tors of connected, non-bipartite thin graphs have the same properties. The strict common
refinement property holds for connected, non-bipartite thin graphs, with its usual conse-
quences: UPF and eqn. (1) for prime decomposition [McK71].
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The inference A · C ∼= B · C ⇒ A ∼= B is called cancellation. The cancellation law
is an immediate consequence of UPF; however, it may hold even if UPF fails. Lovász
proved [Lov71] that for cancellation, it suffices to require that the graphs A and B both
have a homomorphism to C. Moreover An ∼= Bn always implies A ∼= B. In fact,
Lovász [Lov72a] has shown, using an elegant inclusion-exclusion argument, that these
statements hold in any finite category.

2.4 Strong product

For a simple graph X, let X0 be the graph obtained by attaching a loop at each vertex.
Let Y 0 be obtained by removing all loops from Y . Now for two simple graphs X, Y , we
have X ⊗ Y = (X0 · Y0)

0. Thus the strong product can be viewed as a tame special case
of the categorical product (imagine a loop at every vertex). It follows that for connected
simple graphs, UPF holds. Moreover, the strict common refinement property holds for
connected graphs with thin complements.

The UPF of connected graphs can be found in polynomial time (Feigenbaum, Schäffer [FS92]).

2.5 Lexicographic product

This product is right-distributive with respect to disjoint unions (all other products dis-
cussed are distributive). It distributes complementation: X[Y ] ∼= X[Y ]. The only pairs of
graphs which commute with respect to the lexicographic product are (Kn, Km), (Kn, Km),
and Xn, Xm for any X. Moreover the following cancellation law holds for finite graphs: if
A[B] ∼= X[Y ] and |V (B)| = |V (Y )| then A ∼= X and B ∼= Y .

Let X + Y denote the disjoint union of the graphs X, Y and set X ⊕ Y = X + Y
(Zykov sum).

Observe that Kq[X[Kq] + Km] ∼= (Kq[X] + Km)[Kq], and, by complementation,
Kq[X[Kq] ⊕ Km] ∼= (Kq[X] + Km)[Kq]. We call these operations elementary transposi-
tions. They preserve primality.

Theorem 2.1. (Chang [Cha61], Imrich [Imr71]) Any two prime factorizations with
respect to the lexicographic product can be transformed into each other by elementary
transpositions.

For further references, cf. [Jón81].
Clearly, Aut(X[Y ]) ≤ Aut(Y ) ≀ Aut(X) (wreath product in its imprimitive action, cf.

Chap. 12): we may apply an automorphism of each copy of Y separately; and then, apply
a single automorphism of X. We state a sufficient condition which guarantees equality
here.

Theorem 2.2. (Sabidussi) Let X, Y be finite graphs. Assume X is thin if Y is discon-
nected and X is thin if Y is disconnected. Then Aut(X[Y ]) = Aut(Y ) ≀ Aut(X).

Feigenbaum and Schäffer [FS92] observed that recognizing composite graphs is polynomial-
time equivalent to the graph isomorphism problem (Sec. 6) and therefore not known to be
solvable in polynomial time.
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3 Cayley graphs and vertex-transitive graphs

3.1 Definition, symmetry

In 1878, Cayley introduced a graphic representation of abstract groups. With a group G
and a set S ⊆ G of generators he associated what we now call a Cayley color diagram: a
directed graph with colored edges. The vertex set of the diagram Γc(G, S) is G. One color
corresponds to each member of S; and the vertex g ∈ G is joined to sg ∈ G by an edge of
color s.

If we ignore colors, we obtain the Cayley digraph ~Γ(G, S). If in addition we ignore
orientation of the edges, we obtain a simple graph: the Cayley graph Γ(G, S). The degree
of its vertices is |S ∪ S−1 \ {1} |.

The Cayley graph Γ(G, S) is connected because S generates G. Cycles in the Cayley
graph correspond to relations among the elements of S. In particular, if S is a set of free
generators of a free group G then Γ(G, S) is a tree. The converse also holds if there are no
involutions (elements of order 2) in S. (Involutions correspond to cycles of length 2 in the
Cayley diagram, invisible in the Cayley graph.) More generally, if Γ(G, S) is a tree then
G is a free product of infinite cyclic groups and of cyclic groups of order 2; the members
of S generate these free factors.

If no proper subset of S generates G, we call Γ(G, S) a minimal Cayley graph. Infinite
groups do not normally have minimal sets of generators. If S can be linearly ordered such
that no element of S is generated by its predecessors, we call Γ(G, S) semiminimal. Every
group possesses semiminimal Cayley graphs.

For g ∈ G, the right translation ρg : G → G is defined by xρg = xg (x ∈ G). The
map ρ : g 7→ ρg ∈ Sym(G) is the right regular permutation representation of G. Its image
Gρ ≤ Sym(G) is a regular permutation group (Chap. 12). The following statements
regarding the automorphism groups of Cayley diagrams and graphs are easy to verify.
(Recall that automorphisms of colored directed graphs preserve colors and orientation by
definition.)

Proposition 3.1. (a) Gρ = Aut(Γc(G, S)) ≤ Aut(Γ(G, S)). (b) (Sabidussi [Sab64])
A graph X = (G,E) is a Cayley graph of the group G if and only if Gρ ≤ Aut(X).

Cayley graphs are thus vertex-transitive; the converse of this statement is false. Indeed,
by 3.1(b), a graph X is Cayley precisely if Aut(X) contains a regular subgroup. The
smallest example of a vertex-transitive graph with no regular subgroup of automorphisms
is Petersen’s graph. This is the first member KG2,1 of the infinite family of Kneser’s
graphs KGn,k. (n ≥ 2, k ≥ 1), most of which are not even remotely Cayley-like. KGn,k

has
(
2n+k

n

)
vertices identified with the set of n-tuples of a (2n + k)-set; two vertices are

adjacent if the corresponding n-tuples are disjoint (cf. Chapters 4, 24, 34).

Theorem 3.2. ([Kan72],[God80a]) (a) Kneser’s graph KGn,k (n ≥ 2, r ≥ 1) is a
Cayley graph precisely if n = 2 and 2n+k is a prime power, 2n+k ≡ −1 (mod 4),
or n = 3 and 2n+ k ∈ {8, 32}.
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(b) If n ≥ 4 then, with some exceptions, the only transitive proper subgroup of Aut(KGn,k)
is the one induced by the alternating group A2n+k. Exceptions occur for n = 5 when
2n+ k ∈ {12, 24} and for n = 4 when 2n+ k ∈ {9, 11, 12, 23, 24, 33}.

The proof requires the following result of Livingstone and Wagner. A permutation
group G ≤ Sym(A) is t-transitive if it is transitive on the set of ordered t-tuples of distinct
elements of A. G is t-homogeneous if it is transitive on the set of t-subsets of A.

Theorem 3.3. (Livingstone-Wagner [LW65]) (a) If G is t-homogeneous then it is
(t− 1)-transitive. (b) If G is t-homogeneous and t ≥ 5 then G is t-transitive.

Proof: of Theorem 3.2. Assume that KGn,k is a Cayley graph of some group G ≤
Aut(KGn,k). Then, by Proposition 1.2.3(a), we may view G as a subgroup of S2n+k. Now,
G acts regularly on the n-subsets, and is therefore n-homogeneous. By Theorem 3.3,
it must be n-transitive if n ≥ 5. Part (b) now follows because of the nonexistence of
nontrivial 4- and 5-transitive permutation groups of degrees other than those listed.

For n ≥ 3, part (a) follows by inspection of the list of doubly transitive permutation
groups (see Chap. 12). (We remark that Kantor’s original proof did not rely on the
classification theorem.)

Finally, in the case n = 2, we observe that G ≤ Aut(T ) for some tournament T , and
G acts as a regular group on the set of edges of T . It follows by Theorem 1.3 that T must
be a Paley tournament, hence 2n + k is a prime power and ≡ −1 (mod 4). To see that
in this case KGn,k is indeed a Cayley graph, let G be the group of affine transformations
x 7→ ax+ b, a, b, x ∈ GF (2n+ k), a a square in GF (2n+ k). 2

As this example shows, it is often not easy to decide whether or not a given vertex-
transitive graph is a Cayley graph. If the number of vertices is a prime power, the following
partial information is useful.

Theorem 3.4. (a) If G is a transitive group of degree pk, p prime, then the Sylow
p-subgroups of G are transitive as well [Wie64, p.6].

(b) (D. Marušič [Mar85]) Every vertex-transitive (di)graph of order pk, k ≤ 3, is a
Cayley (di)graph. Counterexamples exist for k ≥ 4.

Let V denote the set of those positive integers n for which there exists a connected
vertex-transitive graph of order n which is not a Cayley graph. Considerable effort has
gone into determining the set V (see the survey [Pra90]). It is clear that all multiples
of a member of V also belong to V (the complement of the disjoint union of copies of a
non-Cayley vertex-transitive graph is again non-Cayley). So we need to know the minimal
members of V only (w. r. to divisibility). It is not known whether or not such minimal
members can have an arbitrarily large number of distinct prime divisors. It is conjectured
that almost all vertex-transitive graphs of order n are Cayley graphs.

Cayley graphs are not edge transitive in general. (The triangular prism is an example.)
In fact, their automorphism group often coincides with their group of definition (see the
GRR problem in Section 4.3). Here is a sufficient condition to guarantee added symmetry.
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Proposition 3.5. (Frucht [Fru52]) If a group automorphism α ∈ Aut(G) stabilizes
the set S ⊆ G then α ∈ Aut(Γ(G, S)).

Corollary 3.6. (a) If S is an orbit of some subgroup H of Aut(G) then Γ(G, S) is
edge-transitive. (b) If, in addition, S = S−1, then Γ(G, S) is flag-transitive. (c) An
edge-transitive Cayley graph of an abelian group is flag-transitive.

Note that the added condition in (b) is automatically satisfied if S consists of invo-
lutions (elements of order 2). Frucht [Fru52] employed this observation to construct a
flag-regular graph of degree 3. Another application is the construction of 2-arc-transitive
covering graphs (Theorem 1.5).

3.2 Symmetry and connectivity

The implications of vertex-transitivity to connectivity properties of graphs were discovered
by Mader [Mad71a, Mad71b] and Watkins [Wat70]. Their methods and results were
generalized to directed graphs by Hamidoune (cf. [Ham81]). We state the directed graph
versions; undirected graphs are viewed as digraphs with edges oriented both ways. We note
that a weakly connected finite vertex-transitive digraph is automatically strongly connected
so we may omit the adjective. The connectivity κ(X) of a strongly connected digraph
X 6= Kn is the minimum number of vertices whose deletion destroys strong connectivity.
Edge-connectivity is defined similarly.

Theorem 3.7. Let X be a finite connected vertex-transitive digraph of out-degree d.
(a) The connectivity of X is ≥ ⌈(d+1)/2⌉. If X is undirected then κ(X) ≥ ⌈2(d+1)/3⌉.
(b) The edge connectivity of X is d.
(c) If X is edge transitive or vertex-primitive, then κ(X) = d.

The bounds in part (a) are tight, as shown by the lexicographic product of a (directed
or undirected) cycle of length m ≥ 4 and Kr.

All these results are simple consequences of the theory of atoms, developed by Mader,
Watkins, and Hamidoune in the same papers (cf. Chapter 2, Sec. 7.5). A positive fragment
of a strongly connected digraph X is a subset F ⊂ V (X) such that the set X+(F ) of out-
neighbors of F has cardinality κ(X) and F ∪ X+(F ) 6= V (X) (so X+(F ) is a minimum
cutset). An positive atom is a positive fragment of minimum cardinality.

The key result of Mader, Watkins, and Hamidoune is that if A is a positive atom
and F is a positive fragment then either A ⊆ F or A ∩ F = ∅. (For a simple proof,
see [Ham81, Thm.2.1].) In particular, the positive atoms are pairwise disjoint. Conse-
quently, if X is vertex-transitive then the atoms form a system of imprimitivity. From
this, the vertex-connectivity results readily follow. For the edge-connectivity result, edge-
atoms are introduced and their disjointness proved. (Cf. also Lovász [Lov79a, Ch. 12] for
these and related results.)

Corollary 3.8. (Cauchy-Davenport) Let ∅ 6= A,B ⊂ Zp (p a prime). Then |A +
B| ≥ min {p, |A| + |B| − 1} .
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Proof: W.l.o.g., 0 ∈ B. Apply part (c) of Theorem 3.7 to the vertex-primitive Cayley
digraph X = Γ(Zp, B\{0}). Conclude that if A+B 6= Zp then |X+(A)| ≥ κ(X) = |B|−1.
Observe, on the other hand, that X+(A) = (A+B) \ A. 2

For this result and other connections with additive number theory, see [Ham90].
Minimal Cayley graphs do even better than guaranteed by part (a) of Theorem 3.7: If

X is a minimal Cayley graph of degree d then κ(X) = d (Godsil [God81a]).
Infinite connected vertex-transitive graphs of arbitrarily large degree may have connec-

tivity as small as 1, as the example of the regular tree of any degree demonstrates. Yet,
analogous results exist. Let κf (X) denote the smallest size of a subset C of the vertex
set of a locally finite infinite graph X such that at least one of the connected components
of X \ C is finite. If X is connected, vertex-transitive, and it has finite degree d, then
κf (X) ≥ ⌈3(d + 1)/4⌉ [BW80]. Analogously to the finite case, the proof rests on the
disjointness of atoms (finite sets of vertices with κf neighbors). We note that if the graph
X has just one end (cf. Sec. 3.7) then κ(X) = κf (X).

3.3 Matchings, independent sets, long cycles

All graphs in this section are finite. The next question concerns matchings.

Theorem 3.9. (Little, Grant, Holton [LGH75]) LetX be a connected vertex-transitive
graph on n vertices. (a) If n is even then X has a perfect matching. (b) If n is odd then
X is matching critical. (c) (Lovász, Plummer) If n is even then X is either bicritical
(deletion of any pair of vertices leaves a perfect matching) or elementary bipartite (deletion
of any pair of vertices of opposite color leaves a perfect matching).

Proof: Let D be the set of those vertices of X which are left uncovered by at least
one maximum matching. The Gallai-Edmonds structure theorem (see Chap 3, Sec. 4.3)
asserts that if D is not empty then it consists of matching critical components. But if X
does not have a perfect matching then, by vertex-transitivity, D is the entire vertex set.
This proves (a) and (b). For (c), see [LP86, Theorem 5.5.24]). 2

The following two observations on regular uniform hypergraphs come in handy in the
analysis of various kinds of subsets of vertex-transitive graphs. (A hypergraph is regular
of degree d if every vertex is contained in exactly d edges.)

Lemma 3.10. (Regular Hypergraph Counting Lemma) Let E and F be r-uniform
and s-uniform regular hypergraphs, resp., on the same set of n vertices.

(a) Assume |Ei ∩ Fj | ≥ d for every Ei ∈ E , Fj ∈ F . Then rs ≥ nd.
(b) Assume |Ei ∩ Fj | ≤ d for every Ei ∈ E , Fj ∈ F . Then rs ≤ nd.

If E = F and d 6= n then under condition (a) we have r2 > nd. On the other hand, if
E = F , d 6= n, and |Ei ∩ Ej | ≤ d for every Ei, Ej ∈ E , i 6= j, then r2 < 2nd.
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Proof: (a) Fix Ei ∈ E . Count the number of pairs (x, j) such that x ∈ Ei ∩ Fj . The
result is r degF ≥ d|F| = dn degF /s. (b) as well as the E = F variants follow analogously.
2

As a corollary, we have a tradeoff between α(X), the maximum size of independent
sets, and ω(X), the maximum size of cliques of the graph X, for vertex-transitive graphs.
For a generalization in the context of the Shannon capacity of graphs, see Lovász [Lov79b]
(cf. Chap. 31, Sec. 6).

Corollary 3.11. (L. Lovász, R. M. Wilson) If X is a vertex-transitive graph then
α(X)ω(X) ≤ n.

Proof: Indeed, let E and F be the hypergraphs consisting of the independent sets and
cliques, resp., of maximum size. Each of these two hypergraphs is uniform by definition;
they are regular because X is vertex-transitive. Since a clique and an independent set
share at most one vertex, the result follows from part (b) of Lemma 3.10. 2

We note that Delsarte [Del73] proves the same conclusion under the condition that
X is the union of classes in an association scheme (cf. Chap. 15), in particular, if X is
strongly regular. This condition does not imply the presense of any automorphisms, nor
is it a consequence of vertex-transitivity.

A related observation concerns the connection between the chromatic number χ(G)
and the independence number α(G). Clearly, χ(G) ≥ n/α(G) for all graphs. For vertex-
transitive graphs, this inequality is nearly tight, as pointed out to us by M. Szegedy.

Proposition 3.12. If G is a vertex-transitive graph then

n/α(G) ≤ χ(G) ≤ n(1 + lnn)/α(G).

Proof (of the rightmost inequality): Let A be an independent set of size α = α(G); then
the probability that m = ⌈lnn⌉ random translates of A (by automorphisms) do not cover
V (G) is less than n · (1 − α/n)m < n · e−αm/n ≤ 1. 2

Another corollary to Lemma 3.10, of interest to the theory of computing, concerns
Boolean functions f : 2X → {0, 1}. Here, X is a set of n Boolean variables x1, . . . , xn,
and 2X represents the set of all possible truth value assignments to X. A partial truth
value assignment y : Y → {0, 1} (Y ⊆ X) is said to force f to 0 if f(x) = 0 whenever x
is an extension of y. We call such a y a 0-certificate for f ; its size is |Y |, the cardinality
of the domain of y. We define 1-certificates analogously. Let n0(f) and n1(f) denote the
minimum size of 0-certificates and 1-certificates, resp. For every x ∈ 2X there exists a
smallest restriction y of x which is an f(x)-certificate; let m(f ; x) denote its size, and
let N(f) = maxxm(f ; x) where the maximum is taken over 2X . The quantity N(f) is
called the nondeterministic decision-tree complexity of f . (This is a lower bound on the
deterministic decision-tree complexity discussed in Chap. 34, Sec. 4.4. Incidentally, the
“evasiveness” problems considered there relate symmetry to complexity in a remarkable
way.) Clearly, N(f) ≥ max {n0(f), n1(f)}.

Automorphisms of f are those permutations of X which leave f invariant.

Corollary 3.13. If f is a non-constant Boolean function on n variables with transitive
automorphism group then n0(f)n1(f) ≥ n. Consequently, N(f) ≥ √

n.
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Proof: The domains of a 0-certificate and a 1-certificate must intersect. One can thus
apply Lemma 3.10 (a) to the hypergraphs formed by an orbit of each kind of domain. 2

Our next subject is long paths and cycles. Only four connected vertex-transitive
graphs without Hamilton cycles are known (assuming the number of vertices is n ≥ 3).
Each of them is trivalent; and the first two are 3-arc-transitive (cf. Sec. 5.1): the Petersen
graph (10 vertices), and the Coxeter graph (28 vertices) (see Figa. 8,9 in Chap. 1, Sec.
4). (The automorphism group of the latter is PGL(2, 7), see Wong [Won67]; cf. [Big73]).
The other two are obtained from these by replacing each vertex by a triangle (30 and 84
vertices, resp.). Each of these four graphs possesses a Hamilton path and none of them
is a Cayley graph. A conjecture of Lovász (1969) not shared by this author holds that
all connected vertex-transitive graphs have Hamilton paths. The problem as to whether
all Cayley graphs (n ≥ 3) have Hamilton cycles appears to first have been stated by
E. Rapaport-Strasser [RS59]. In my view these beliefs only reflect that Hamiltonicity
obstacles are not well understood; and indeed, vertex-transitive graphs may provide a
testing ground for the power of such obstacles. We conjecture that for some c > 0, there
exist infinitely many connected vertex-transitive graphs (even Cayley graphs) without
cycles of length ≥ (1 − c)n.

We mention a useful Hamiltonicity obstacle. A graph is tough if, after deletion of
any k of its vertices, the remaining graph has ≤ k connected components. Obviously,
any Hamiltonian graph is tough; being non-tough is a Hamiltonicity obstacle. This ob-
stacle breaks down for vertex-transitive graphs: every connected vertex-transitive graph
is tough. Indeed, by Theorem 3.7(b), a d-regular connected vertex-transitive graph has
edge-connectivity d, a circumstance that immediately implies toughness.

At any rate, the Hamiltonicity conjectures have been confirmed in a number of cases.
One notable Hamilton cycle was even patented in 1953: the one constructed by F. Gray
for the minimal Cayley graphs of the elementary abelian groups of order 2d (the d-cube).
A large number of papers has since referred to Hamilton cycles in Cayley graphs as “gen-
eralized Gray codes”. (See the references in [CSW89].)

In the subsequent statements, every graph has n ≥ 3 vertices.
It is easy to see that every Cayley graph of a finite abelian group is Hamiltonian

(J. Pelikán, see [Lov79a, Ex.12.17]). Marušič, Witte, Keating, Dürnberger, and others
succeeded in significantly relaxing the condition of commutativity. We refer to the survey
by Witte and Gallian [WG84] for details. One of the weakest known sufficient conditions
for all Cayley-graphs of G to be Hamiltonian is that the commutator subgroup of G is
cyclic of prime power order (Keating-Witte [KW85]; cf. [Dür85]). Witte proved that all
Cayley digraphs of a p-group have a Hamilton cycle [Wit86].

So far, no non-solvable group has been shown to have this property. Even the following,
less ambitious problem is open: does every finite group have a minimal Cayley graph with
a Hamilton cycle?

For several reasons (including, as a curiosity, campanology, the study of bell ringing
sequences, see White [Whi85]), special classes of Cayley graphs of the symmetric groups
are of interest.

Theorem 3.14. (Kompel’macher-Liskovets [KL75]) Let T be any connected sys-
tem of transpositions of n elements. Then the Cayley graph Γ(Sn, T ) is Hamiltonian.
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The case of adjacent transpositions (see S. M. Johnson [Joh63]) was recently generalized
to all finite reflection groups (groups of affine transformations of Rn, generated by a set
of reflections) (Conway, Sloane, Wilks [CSW89]).

The situation for Cayley digraphs is more complicated. Rankin [Ran48] determined

when a Cayley digraph ~Γ(G, S) of a finite abelian group G is Hamiltonian provided |S| =
2 and gave examples of Cayley digraphs of the alternating groups A6 and A7 without
Hamilton cycles. J. Milnor gave a class of solvable groups with two generators such that
the difference between the order of the group and the longest directed paths in the resulting
Cayley digraphs is arbitrarily large (see [WG84]).

Much less is known about vertex-transitive graphs of given order. Trivially, every
connected vertex-transitive graph of prime order p is a Cayley graph and is therefore
Hamiltonian. Marušič’s result (Theorem 3.4(b)) extends this to orders p2 and p3.

Theorem 3.15. (a) Every connected vertex-transitive graph of order n is Hamiltonian
if n has one of the following forms: p, 2p, with the exception of the Petersen graph
(Alspach, [Als79]); 3p, p2, p3, 2p2 (Marušič [Mar85], [Mar87]);

(b) Every connected vertex-transitive graph of order 4p and 5p has a Hamilton path
(Marušič–Parsons [MP83]).

The only general lower bound on the length of the longest cycles and paths of vertex-
transitive graphs is the following. (Nothing better is known for Cayley graphs either.)

Proposition 3.16. ([Bab79b]) If X is a connected vertex-transitive graph on n ≥ 5
vertices then X has a cycle of length > 2

√
n.

We note that 3-connected trivalent graphs have cycles of length ≥ n0.69 (Jackson [Jac86])
but need not have cycles longer than n0.96 (Bondy-Simonovits [BS80]).

The proof of the Proposition is based on the following observation: If X is a 3-connected
regular graph of order n ≥ 4 then every pair of longest cycles intersects in ≥ 4 vertices.
Now, since every connected vertex-transitive graph of degree ≥ 3 is 3-connected (The-
orem 3.7 (a)), an application of the Regular Hypergraph Counting Lemma 3.10 to the
vertex sets of the longest cycles completes the proof of Proposition 3.16. 2

3.4 Subgraphs, chromatic number

Every graph Y with n vertices is an induced subgraph of some Cayley graph X of any
given group of order ≥ cn2 ([Bab78b], [BS85], [GI87]). Every Y can be embedded into a
Cayley graph of order 2n such that all automorphisms of Y extend to automorphisms of
X. The following more general extension theorem holds.

Theorem 3.17. (E. Hrushovski [Hru92]) Given a finite graph Y and a family F of
isomorphisms between pairs of subgraphs of Y , there exists a finite graph X containing Y
as an induced subgraph, such that all elements of F extend to automorphisms of X.
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Here, X may be required to be flag-transitive. This result has applications to the structure
theory of the automorphism group of the Rado graph (countable “random graph”, cf.
Sec. 5.3). It follows that “almost all” automorphisms of that graph are conjugates (“almost
all” in the sense “comeager” (complement of a set of first Baire category [Oxt80]): there
exists a comeager conjugacy class; cf. Truss [Tru92]).

Not all graphs are subgraphs of minimal Cayley graphs. Let X = Γ(G, S) be a minimal
or semiminimal Cayley graph (cf. Sec.3.1) of the (finite or infinite) group G. Such graphs
admit a coloring of the edges with the following properties: (a) every vertex has degree
≤ 2 in each color; (b) at least one of the colors occurring in a cycle occurs at least twice
on that cycle. (In the minimal case, each color occurring in a cycle occurs at least twice.)

These properties put constraints on the possible subgraphs. In particular, if X is a
minimal Cayley graph then it contains no K−

4 (K4 minus an edge), and no K2,3. If X is
semiminimal, it contains no K5,17 ([Bab78a]). In both cases it follows that the chromatic
number of X is at most countably infinite, according to the following result of Erdős
and Hajnal (see Chap. 42, Thm. 6.3.): If a graph has uncountably infinite chromatic
number then it contains Km,ℵ1

for every positive integer m.
It is an open problem whether or not the chromatic number of finite minimal Cayley

graphs is bounded. We conjecture it is not. A related stronger conjecture is that for
every ǫ > 0 there exist minimal Cayley graphs X such that α(X) ≤ ǫ|V (X)| where α(X)
denotes the size of the largest independent set of X.

A strong consequence of constraints (a) and (b) above was deduced by Spencer.

Theorem 3.18. (Spencer [Spe83]) For every g ≥ 3 there exists a finite graph Y of
girth g such that Y is not a subgraph of any (semi)minimal Cayley graph.

The proof uses the probabilistic method and does not provide explicit graphs Y . It is
not known whether or not such excluded subgraphs of girth 5 and degree 3 exist, even for
minimal Cayley graphs. (The Petersen graph is a subgraph of a minimal Cayley graph of
a group of order 20.)

Every finite group has a Cayley graph of chromatic number ≤ 4. (This is a consequence
of the fact that every finite simple group is generated by ≤ 2 elements.) It is an open
question whether or not every infinite group has a Cayley graph of finite chromatic number.

3.5 Neighborhoods, clumps, Gallai–Aschbacher decomposition

In this section we highlight a graph theoretic result that has played a role in the classifi-
cation theory of finite simple groups.

We shall (in this section) consider finite graphs as well as locally finite infinite graphs
with uniformly bounded degrees. X will always denote a graph with vertex set V and
complement X; the set of neighbors of x ∈ V is denoted by X(v). The subgraph induced
by X(v) is the link at v. We say that X has constant link Y if all of its links are isomorphic
to Y (a finite graph by the convention above). All vertex-transitive graphs have constant
link, and many others, including triangle-free regular graphs and their line graphs. A finite
graph Y is a link graph if there exists a graph with constant link Y .
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Many classes of link-graphs as well as non-link graphs have been found (see [Hel78],
[BHM80]). However, [Bul72] asserts that the problem whether or not a given finite graph
is a link graph is undecidable. It is shown in [Bul72] and [BC75] that there exist graphs
which are links of infinite vertex-transitive graphs but do not occur as links in finite
constant-link graphs. By counting certain triangles, Blass, Harary, and Miller [BHM80]
show that if L is the link in a finite vertex-transitive graph and i is an odd number then
the number of vertices of degree i in L is even. This is not true for link graphs in general
([BC75] provides an infinity of examples), nor does it hold for infinite vertex-transitive
graphs. Hell [Hel78] observes that if a (finite or infinite) vertex-transitive graph X has an
asymmetric link then X is a Cayley graph (in fact a GRR, cf. Sec.4.3). He also shows
that the link of a Cayley graph has an even number of vertices of degree one.

The following fairly general result is implicit in [Asc76].

Theorem 3.19. Assume both X and X are connected. Then at least one of the links of
X, say Y , has the property that Y has a unique largest connected component.

A stronger result holds for vertex-primitive graphs.

Theorem 3.20. (M. Aschbacher, B. Fischer) Let X be a vertex-primitive graph
other than the complete graph. Let Y be the graph induced by the neighborhood of
a vertex in X. Then the complement of Y is connected.

The proof of these theorems rests on a purely graph theoretical result, part of which was
discovered by Gallai [Gal71] in the context of the characterization of transitively orientable
graphs.

A subset C ⊆ V is called a clump if for each w ∈ V \C, if w has a neighbor in C then
X(w) ⊇ C. The trivial clumps are V , ∅, and the singletons. A proper clump is a clump
other than V . A maximal clump is a proper clump not properly contained in any other
clump.

We begin with two easy observations. (a) If C,D are clumps and C ∩ D 6= ∅ then
C ∪D is a clump. (b) If both X and its complement X are connected then V is not the
union of two proper clumps. It is immediate from these that maximal clumps are pairwise
disjoint, which proves part (i) of the following result.

Theorem 3.21. (Gallai–Aschbacher decomposition) Assume both X and X are
connected. Let C1, . . . , Cm be the maximal clumps ofX. Then (i) [Gal71, Asc76] (C1, . . . , Cm)
form a partition of V . (ii) [Asc76] Let Ni be the set of common neighbors of Ci. (By def-
inition, Ci ∩ Ni = ∅.) Then there exists i such that the subgraph induced by Ni in the
complement of X is connected.

To see how Theorem 3.20 follows, we observe that the maximal clumps form a system
of imprimitivity for Aut(X); therefore if X is vertex-primitive then each Ci is a singleton.

The proof of assertion (ii) is nontrivial. For v ∈ V , consider the components of the
subgraph of X induced by X(v). Let M be a maximal such component (considering all
v ∈ V ). By definition, M induces a connected subgraph of X. Let C be the set of common
neighbors of M . One can prove that C is a maximal clump, and M is the set of common
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neighbors of C. This completes the proof of Theorem 3.21; and together with (i) above
we also see that the choice of M among the components of X(v) in X must be unique
(since any other component is a subset of C, the unique maximal clump containing v). 2

Gallai [Gal71] gives the following equivalent definition of the above decomposition. Let
us say that two edges are equivalent if they together form an induced path of length 2.
Take the transitive closure of this relation to obtain the Gallai equivalence. If both X and
X are connected, then there will be a unique Gallai class of edges which spans the entire
X. The components of the complement of this class can be grouped together in a unique
way to produce the maximal clumps; two such components will belong to the same class
if they have the same neighborhood in X.

The role of Theorem 3.20 in the classification of finite simple groups is explained by
Aschbacher [Asc76]. He shows how B. Fischer’s celebrated “3-transpositions theorem”
[Fis71] follows from it; in fact, the result arose from one of Fischer’s lemmas. A set of 3-
transpositions is a set S of elements of order 2 in a group G such that for any pair g, h ∈ S,
the order of gh is ≤ 3. Fischer characterized those almost simple groups which are gen-
erated by a conjugacy class of 3-transpositions. These include all the symmetric groups,
certain classical (symplectic, orthogonal, unitary) groups, plus three sporadic groups dis-
covered in the process (named M(22), M(23), and M(24)). (M(24) is not simple; like the
symmetric groups, it has a simple subgroup of index 2. Cf. [Asc80].)

Fischer’s central result was that the action of G by conjugation on S is a rank 3
permutation group. This is derived from considering the vertex-transitive graph with
vertex set S, joining two elements if they commute. G is shown to act as a primitive
group on this graph; and Theorem 3.20 is invoked. 2

Godsil [God80b] considers the link L of X together with the link L∗ of X, the dual link.
He gives the following remarkable characterization: if X is finite, vertex-transitive, both
the link L and the dual link L∗ are disconnected but at least one of them has no isolated
vertices, then X ∼= L(K3,3). He also characterizes the case when both L and L∗ have
isolated vertices. In this latter case, Aut(X) always has an element of the form (12)(34).
These results are central to his solution of the GRR problem (cf. Sec.4.3).

3.6 Rate of growth

Note. Throughout this section, X will denote an infinite, connected, locally finite graph.
(A graph is locally finite if all vertices have finite degree.)

Certain properties of groups are best expressed in graph theory language. A foremost
example is the growth rate of finitely generated infinite groups.

For a graph X, let B(n, x) denote the ball of radius n about the vertex x, i.e. set of
vertices at distance ≤ n from x. For a vertex-transitive graph, set f(n) = |B(n, x)|. This
function has a property resembling log-concavity.

Proposition 3.22. (Gromov [Gro81]) If X is vertex-transitive, then f(n)f(5n) ≤
(f(4n))2.

Proof: Let Y be a maximal system of vertices in B(3n, x) pairwise at distance ≥ 2n+1.
Now the disjoint balls B(n, y) : y ∈ Y are contained in B(4n, x), hence |Y |f(n) ≤ f(4n).
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On the other hand, the balls B(2n, y) : y ∈ Y cover B(3n, x), and therefore the balls
B(4n, y) : y ∈ Y cover B(5n, x). This implies f(5n) ≤ |Y |f(4n), hence the result. 2

X is said to have growth rate g(n) if g(c1n) ≤ f(n) ≤ g(c2n) for some constants c1, c2
and every sufficiently large n. Thus, the growth rate is an equivalence class of functions
rather than a function. There is a natural partial order on the equivalence classes; when
comparing growth rates, we shall always mean comparison of their equivalence classes.

X is said to have polynomial growth rate if its growth rate is bounded by nc for some
constant c; its growth rate is exponential if it is bounded from below by cn for some
constant c > 1.

For a finitely generated infinite group G, the growth rate of G is defined as the growth
rate of the Cayley graph Γ(G, S) for some finite set S of generators of G. It is easy to
see that the growth rate does not depend on the particular choice of S; a change in the
generators will only affect the constants c1 and c2.

Finitely generated Abelian groups have polynomial growth rates, non-cyclic free groups
have exponential growth rates. The following is easy to prove.

Proposition 3.23. (a) If H is a subgroup of G, then the growth rate of G is greater
than or equal to the growth rate of H .

(b) If |G : H| is finite then G and H have the same growth rates.
(c) (Gromov [Gro81]) If H is finitely generated and |G : H| is infinite then fG(n) ≥

nfH(n), where fG and fH are the growth functions of the respective groups under
appropriately chosen sets of generators.

(c) (Milnor, Wolf [Mil68a, Wol68]) Finitely generated nilpotent groups have
polynomial growth rates.

The Bass-Wolf formula gives the exact growth rates of nilpotent groups. Let G be a
finitely generated infinite nilpotent group and let G = G1 > G2 > . . . > Gm = 1 be its
descending central series. Let di be the torsion-free rank of the abelian group Gi/Gi+1.

Theorem 3.24. (Bass, Wolf [Bas72, Wol68]) The rate of growth of the nilpotent
group G is nd where d =

∑
idi.

The following very deep result settles a problem raised by Milnor [Mil68a]:

Theorem 3.25. (Gromov [Gro81]) A group has polynomial growth rate if and only
if it is nilpotent-by-finite, i.e. it has a nilpotent subgroup of finite index.

Two important particular cases of this result were established earlier; they are ingre-
dients in Gromov’s proof.

Theorem 3.26. (Milnor, Wolf, Tits [Mil68a, Wol68, Tit72]) (a) A finitely gen-
erated solvable group G has exponential growth unless G is nilpotent-by-finite.

(b) A finitely generated subgroup G of a connected Lie group has exponential growth
unless it is nilpotent-by-finite.

In fact, Tits proves the following stronger statement.
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Theorem 3.27. (Tits [Tit72]) If L is a Lie group with finitely many components and
G is a finitely generated subgroup of L then either:

(a) G contains a free group of rank 2 and has therefore exponential growth; or
(b) G is solvable-by-finite. In this case it has exponential growth rate unless it is

nilpotent-by-finite.

We give a very rough sketch of the proof of Gromov’s Theorem 3.25. Let G be a finitely
generated group of polynomial growth. Fix a finite set S of generators. Select a sequence
ri → ∞ of integers. Consider the sequence of metric spaces Γi on the set G with distance
di(x, y) = 1

ri
dist(x, y) where “dist” is the distance in the Cayley graph Γ(G, S). The

sequence ri is chosen so as to ensure a fairly regular behavior of the sequence f(2jri), i =
−j, . . . , j. This is accomplished with the aid of Proposition 3.22 and using the assumption
of polynomial growth. The sequence Γi is then nice enough to have a subsequence that
converges in an appropriate sense to a metric space Y . Elementary considerations show
that Y is locally compact, connected, and locally connected. Moreover, each ball in Y
is path-connected. The isometry group L of Y is transitive on Y . The choice of the ri

ensures that the Hausdorff dimension of Y is finite. A celebrated theorem of Montgomery
and Zippin [MZ55] now implies that under these conditions, L is a Lie group with a finite
number of components. Now a fairly involved argument using the quoted result of Tits
(Theorem 3.27(b)) completes the proof. 2

Other ingredients of this last part of the proof are the Milnor-Wolf theorem (Theo-
rem 3.26(a)) and the following theorem of Jordan (cf. [Rag72]).

Theorem 3.28. (Jordan [Jor95]) If L is a Lie group with a finite number of com-
ponents then there exists a number q such that every finite subgroup of L contains an
Abelian subgroup of index at most q.

An appendix to Gromov’s paper contains a relatively simple proof of the subcase of
the Milnor-Wolf theorem used in Gromov’s proof.

Milnor [Mil68a] raised the question whether groups with “intermediate growth rates”
(neither polynomial, nor exponential) exist. The positive answer was given by Grigorchuk.

Theorem 3.29. (Grigorchuk [Gri83]) There exist 2-generated torsion groups with
growth rates between 2nα

and 2nβ

where α = 1/2 − ǫ for any ǫ > 0 and β = log32 31.

Vertex-transitive graphs with polynomial growth rates were characterized by V.I. Trofi-
mov.

Theorem 3.30. (Trofimov [Tro85]) Let X be vertex-transitive. The following are
equivalent.

(a) X has polynomial growth.
(b) The vertex set V under the action of Aut(X) admits a system of imprimitivity σ

with finite equivalence classes such that Aut(X/σ) is finitely generated, nilpotent-
by-finite, and the stabilizer of any vertex of X/σ in Aut(X/σ) is finite.
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Here X/σ is the homomorphic image of X under the vertex map V (X) → V (X)/σ;
hence two equivalence classes are adjacent if they have at least one pair of adjacent rep-
resentatives.

Related topics are surveyed in [Tro92].
We should mention that these questions were originally motivated by connections be-

tween the curvature of a Riemannian manifold and the growth rate of its fundamental
group (Milnor [Mil68b]).

3.7 Ends

Note. Throughout this section, X will denote an infinite, connected, locally finite graph.
(A graph is locally finite if all vertices have finite degree.)

Ends are another important graphic notion for finitely generated infinite groups. (For a
detailed account, see Cohen [Coh72].)

The set of ends of a connected, locally connected, locally compact Hausdorff space X
is defined as the inverse limit of the directed family of the set of components of X \C for
all compact subsets C (Hopf [Hop44]). The analogous concept for connected graphs was
developed by Halin [Hal64].

Ends of a (connected, infinite, locally finite) graph X can be defined analogously as
the inverse limit of the sets of infinite components obtained by deleting finite subsets C
of the edge set of the graph X. The ends can also be defined as equivalence classes of
one-way infinite paths: two such paths are equivalent if the deletion of no finite set of
edges separates their infinite components.

The ends of a finitely generated group are defined as the ends of its Cayley graphs.
Again, different choices of finite sets of generators result in topologically equivalent sets
of ends. Stallings [Sta71] contains important results on ends of groups.

Proposition 3.31. (Hopf [Hop44]) If X is vertex-transitive then it has 1 or 2 or in-
finitely many ends. In particular, the same holds for finitely generated infinite groups.
Consequently, if X has more than 2 ends then it has exponential growth rate.

A vertex-transitive graph has two ends if and only if it has linear growth rate. Groups
with two ends have been fully characterized.

Theorem 3.32. (Freudenthal [Fre45]) A finitely generated infinite groupG has two
ends if and only if G has a finite normal subgroup N such that the factor group G/N is
either cyclic (Z) or dihedral (the free product Z2 ∗ Z2).

Groups with infinitely many ends have also been characterized. We note that they
have exponential growth rates; the converse is false. Let A be a group, F a subgroup, and
ϕ : F → A an injection. The HNN -extension G = (A,F, ϕ) is generated by A and an
additional element x subject to the relations x−1fx = ϕ(f) (f ∈ F ).

Theorem 3.33. (Stallings [Sta71]) A finitely generated group G has infinitely many
ends if and only if G is
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(a) either a free product with amalgamated finite subgroup G = G1 ∗F G2, where F is
a finite proper subgroup of each Gi and has index ≥ 3 in at least one of them;

(b) or an HNN -extension G = (A,F, ϕ), where F is a finite proper subgroup of A.

These cases are closely related to group actions on trees. A theory of such actions was
developed by Bass and Serre [Ser80]. We quote two special cases.

The group G is said to act without inversion on a graph if no element of G inverts any
edges. In other words, G preserves an orientation of the graph.

Theorem 3.34. ([Ser80, Ch. 4]) (a) LetG act edge-transitively but not vertex-transitively
on a tree T . Let P,Q be two adjacent vertices of X. Then G is the free product of
the stabilizers of P and Q amalgamated at their intersection.

(b) Every amalgam of two groups acts on a tree in this way.

Theorem 3.35. ([Ser80, Ch. 5.4]) Let G act edge-transitively and vertex-transitively
but without inversions on a tree T . Then G is an HNN -extension of the stabilizer of a
vertex. - Every HNN -extension acts on a tree in this way.

For the general structure theorem, see Sec. 3.11.
M.J. Dunwoody used Theorems 3.34 and 3.35 to give the following remarkable gener-

alization of the Stallings characterization theorem (Theorem 3.33).

Theorem 3.36. (Dunwoody [Dun82]) Let G be a group acting on a connected graph
X with ≥ 2 ends. Then G is either an amalgam G = A ∗C B or an HNN -extension
of a group C, where in each case C contains the stabilizer of two adjacent vertices as a
subgroup of finite index.

The proof is based on the construction of a tree T on which G acts without inversions
and so that the factor graph has a single edge. A key tool for the construction of T is the
following surprisingly strong statement on the existence of cuts of very special kind.

Theorem 3.37. (Dunwoody [Dun82]) Let X = (V,E) be a connected graph with ≥ 2
ends. Then there exists a nonempty proper subset A ⊂ V such that

(a) the set of edges between A and V \ A is finite;
(b) for any g ∈ G, either A or V \ A is included in either Ag or in (V \ A)g.

In this result, the graph X is not required to be locally finite.

3.8 Isoperimetry, random walks, diameter

The boundary of a subset U of the vertex set V of the graph X is the set ∂U of vertices
in V \ U , adjacent to at least one vertex in U . The isoperimetric ratio of a set W ⊂ V
is defined as ǫ(W ) = |∂(W )|/|W |. We say that W is ǫ-expanding if ǫ(U) ≥ ǫ for every
U ⊆W (U 6= ∅). We call X an ǫ-expander if every subset W ⊂ V with 1 ≤ |W | ≤ |V |/2 is
ǫ-expanding. A “family of linear expanders” is an infinite sequence of graphs of bounded
degree which are ǫ-expanding for some fixed ǫ > 0. (“Linear” refers to the O(V ) bound
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on the number of edges.) Expanders are treated in detail in Chapter 32. Some Cayley
graphs of linear groups turn out to be particularly strong expanders [LPS88b], [Mar88].

Here we shall focus on more modest expansion properties shared by all vertex-transitive
graphs. The generality of the results is important in applications to the analysis of algo-
rithms in groups (cf. [Bab91a]).

It is easy to see that that the diameter of an ǫ-expander on n vertices can be bounded
as

diam(X) < lnn/ ln(1 + ǫ). (4)

For ǫ ≤ 1/2, we infer ǫ < (4/3)(lnn/diam(X)). It is remarkable that for vertex-transitive
graphs, this inequality is tight apart from an lnn factor.

Theorem 3.38. ([Ald87, Bab91b, BS92a]) If X is a vertex-transitive graph of diam-
eter ∆ then it is a 2/(2∆ + 1)-expander.

D. Aldous’s proof (for Cayley graphs) is based on the following observation, due to
Erdős and Rényi [ER65] (cf. [BE82]), which we quote in a slightly generalized form
([BS85], [CFS90]).

Proposition 3.39. Let G be a transitive group acting on a set V , |V | = n. Let A ⊆ V .
Then

(1/|G|)
∑

g∈G

|A ∩Ag| = |A|2/n. (5)

(A set and its translates are “independent on average”.)
It follows by greedy selection that G has a transitive subgroup generated by at most

log2 n+ log2 lnn+ 1 elements [BS85], and a set of O(logn) random elements are likely to
generate a transitive subgroup ([CFS90]), a fact with implications to efficient manipulation
of permutation groups (cf. [BCFS91]).

Let now X = Γ(G, S) where S = S−1 generates G and assume diam(X) = ∆. If
|A| ≤ |G|/2 then by (5) there exists g ∈ G such that |A \ gA| ≥ |A|/2. Aldous observes
that g = h1 · · ·hk for some k ≤ ∆ from which one concludes that |hiA \A| ≥ |A|/(2∆) for
some some hi ∈ S, proving a 1/(2∆) lower bound for Theorem 3.38. 2

By Alon’s theorem [Alo86] (see Chap. 32, Theorem 3.2) it follows that for vertex-
transitive graphs X of degree d and diameter ∆, the eigenvalue gap is d−λ2 > 1/(2∆+2)2,
where λ2 is the second largest eigenvalue of X.

This eigenvalue gap is significant in estimating the speed at which a random walk
over X approaches the uniform distribution. Let us consider a lazy random walk on X,
in which at every step we flip a coin; if it comes out heads, we don’t move, else we
move to an adjacent vertex, each neighbor having equal chance of being visited. (This
trick eliminates potentially annoying negative eigenvalues from the matrix of transition
probabilities.) A direct consequence of the foregoing considerations is the following rapid
convergence ([Ald87], [Bab91b]).

Corollary 3.40. Let v0, v1 be vertices of a vertex-transitive graph of degree d and di-
ameter ∆ with n vertices. After ℓ steps, the lazy random walk, starting at v0, will be at
v1 with probability (1/n)(1 ± ǫ), where

ǫ ≤ n exp(−ℓ/(8d · (∆ + 2)2)). (6)
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In particular, if both d and ∆ are bounded by (log n)O(1), then so is the time it takes for
the lazy random walk to arrive at a nearly uniformly distributed place.

For specific Cayley graphs (related e.g. to card shuffling), different methods have been
used to obtain strong estimates on the time it takes to reach near uniformity [Ald83],
[AD87], [Dia88].

While results of this kind necessarily require the graph to have small diameter (cf.
(4)), vertex-transitive graphs with large diameter, including infinite graphs, also possess
a similar local expansion property.

Theorem 3.41. (Local expansion, [Bab91b, BS92a]) Let X be a connected (finite
or infinite) vertex-transitive graph with vertex set V . Assume that the finite subset U ⊂ V
is within the ball of radius t about some vertex; and |U | ≤ |V |/2. Then U is a 2/(2t+ 1)-
expanding set.

When X = Γ(G, S) is a Cayley graph, again a single generator is responsible: |Ug \ U | ≥
|U |/(4t) for some generator g ∈ S [Bab91b].

This result is a tool in the rigorous analysis of efficient algorithms for permutation
groups [BCFS91]. A further consequence is that in vertex-transitive graphs, random walks
don’t get stuck in a corner for too long. In the theorem below, Xk(v) denotes the ball of
radius k about vertex v, and we consider how soon a random walk, starting at v, may be
expected to be outside this ball.

Theorem 3.42. (Babai [Bab91b]) Let v be the start vertex of a random walk over a
connected vertex-transitive graph X of finite degree d. Assume |X4k(v)| ≤ |V |/2 Let
ℓ ≥ ck2d · ln |X4k(v)|. Then with probability ≥ 1/16, at a random time chosen uniformly
from {1, 2, . . . , ℓ}, the random walk will be outside Xk(v). (c is an appropriate constant.)

This result is at the heart of an algorithm which, given a set of generators of a finite
group G, constructs nearly uniformly generated random elements of G in O(| log(G)|5)
group operations [Bab91b]. Reducing the exponent 5 would be of great significance, since
many algorithms in group theory rely on “randomly chosen” elements from the group (see
e.g. [NP92, BB93]). The heuristics currently used to select such elements do not seem
amenable to rigorous analysis.

Random walks over locally finite infinite graphs such as the d-dimensional grid have
been of great interest for their many applications which include approximations for partial
differential equations and curvature of Riemannian manifolds (see Kesten [Kes59] and the
references in [Tho90], [MGT]). One of the basic qualitative properties of such graphs
is whether they are recurrent (random walks return to their start with probability 1)
or transient (with positive probability they never return). A classical result of Pólya
(1921) (see Feller [Fel68, vol.I,14.7]) asserts that Z2 is recurrent, while Z3 is transient.
For connections of this theory with electrical currents, see [DS84], [Tho90]. Expansion
properties play a critical role in determining transience; if for some fixed ǫ > 0 we have
|∂U | ≥ |U |1/2+ǫ for every finite U ⊂ V then the graph is transient (Varopoulos [Var85],
[Var91]). This result is tight in the sense that ǫ = 0 would not suffice, as the plane grid
Z2 shows.
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For Cayley graphs of finitely generated groups, transience/recurrence does not depend
on the choice of the set of generators. Transience is inherited by subgroups of finite index;
recurrence is inherited by all subgroups.

Thomassen and Woess [TW94] survey a large body of literature on related topics.

Our next subject is the diameter of Cayley graphs (cf. [BHK+90] for more references).
A regular graph of degree r ≥ 2 and diameter d has at most

n ≤ 1 + r + r(r − 1) + . . .+ r(r − 1)d−1 = 1 + r((r − 1)d − 1)/(r − 2)

vertices, hence d > logr−1(n/3). The construction of Cayley graphs of given degree and
small diameter is motivated, among others, by interconnection network design for parallel
computer architectures. Bounds on the diameter with respect to given generators are
relevant for puzzles like Rubik’s cube: in this case, the question is the diameter of a
specific Cayley graph of a group of order 43,252,003,274,489,856,000 with respect to a
set of 12 generators. (The diameter is known to be ≥ 19 and a rigorous almost certain
probabilistic proof exists that it is no more than 36 (A. Fiat et al. [FMS+89]).)

As noted above, expanders have diameter O(logn). For its simplicity and small diam-
eter, interconnection network designers favor a Cayley graph which is not an expander:
the cube-connected cycles. (Cf. Leighton [Lei92].) This is the Cayley graph of the group
Z2 ≀Zs (of order n = s2s), with generators τ, ρ where τ is an involution from the first copy
of Z2, and ρ is a rotation of order s, permuting the s copies of Z2. The vertices can be
represented by (0, 1)-strings of length s with one position marked. The neighbors of such
a marked string are obtained by switching the marked symbol, or moving the mark left or
right by one position, viewing the rightmost and leftmost positions adjacent. The graph
has degree 3 and diameter ⌊5s/2⌋ − 2, whereas log2 n = s + log2 s.

We note that not all groups of order n with k generators admit Cayley graphs of degree
O(k) and diameter O(logn). Groups with a bounded number of generators and a nilpotent
subgroup of bounded index and bounded class of nilpotence require diameter nc by the
Proposition 3.23(c). Using commutator collection, Annexstein and Baumslag obtained the
following explicit value.

Theorem 3.43. ([AB89]) Let G be a group of order n with a nilpotent subgroup of
index t and class ℓ. If S is a set of k generators of G then the diameter of Γ(G, S) is at
least (n/t)c, where

c = (ktℓ)−ℓ/2.

(For abelian subgroups, ℓ = 1.)

Theorem 3.44. (Babai-Kantor-Lubotzky [BKL89]) Every nonabelian finite sim-
ple group G of order n has a set S of at most 7 generators such that the diameter of
Γ(G, S) is ≤ C logn for some absolute constant.

The Cayley graphs constructed in the proof are unlikely to be expanders; it is not
known whether an expander family of bounded degree Cayley graphs of the alternating
groups exists, for instance. They have the advantage, however, that, given an element of
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G in the natural (matrix) representation of G, there is an efficient algorithm (polynomial
in logn) to solve this “generalized Rubik’s cube” puzzle, i.e. to compute a path of length
O(logn) to the identity. (The explicit expanders mentioned in Chap. 32 give no clue,
how to find such a short path.) As an illustration, we describe the solution for the case
G = SL(2, p). With the generators

A =

(
1 1
0 1

)
B =

(
1 0
1 1

)

we obtain expanders but no explicit routing. Instead, we choose the generators

C =

(
2 0
0 1/2

)
D =

(
0 1
1 0

)

and A. It is easy to see that A and C rapidly generate all strict upper triangular matrices
because

C−1

(
1 k
0 1

)
C =

(
1 2k
0 1

)
.

Conjugating by D we obtain transposes.
A particularly elegant construction of a Cayley graph of the symmetric group Sn,

having diameter ≤ 6.75n log2 n, was given by J-J. Quisquater [Qui86] (cf. [BHK+90]).

If we admit a logarithmic number of generators, the situation becomes favorable for every
group. The following result is a consequence of Proposition 3.39 (cf. [BE82] for a short
proof).

Theorem 3.45. (Erdős–Rényi [ER65]) Given a group G of order n, there exists a
set of k ≤ log2 n + log2 lnn + 1 elements S = {g1, . . . , gk ∈ G} such that every x ∈ G is
representable in the form

x = gǫ1
1 g

ǫ2
2 · · · gǫk

k , where ǫi ∈ {0, 1} .

In particular, the diameter of Γ(G, S) is ≤ k.

In estimating the diameter of a Cayley graph, one faces much greater difficulties if
the generators are prescribed. We conjecture, that for every finite simple group G and
every set S of generators, the diameter of Γ(G, S) is at most (log |G|)c for some absolute
constant c. Even in the case of alternating, or, equivalently, symmetric groups, this has
only been verified in very special cases. For permutation groups, the following are known.

Theorem 3.46. Let G ≤ Sn be generated by the set S. Then the diameter of Γ(G, S) is
not greater than:

(a) ckn
2, if all members of S are cycles of lengths ≤ k (Driscoll-Furst [DF87]);

(b) cn2k, if all members of S have degree ≤ k (McKenzie [McK84]);
(c) exp(

√
n lnn(1 + o(1))), if no assumption on S is made (Babai-Seress [BS88]).
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The bound in (c) is asymptotically tight, as shown by the cyclic group generated by the
product of cycles of prime lengths 2, 3, . . . , pi where 2+3+ . . .+pi ≤ n < 2+3+ . . .+pi+1.
Unfortunately, however, no better bound is known for G = Sn either.

We can do much better if the generators are chosen at random rather than adversarially.

Theorem 3.47. Let σ, τ be two randomly selected permutations of a set of n elements
and G = 〈σ, τ〉.

(a) With probability 1 − O(1/n), An ≤ G ≤ Sn (Dixon [Dix69]). (The error term is
from [Bab89].)

(b) With probability 1 − o(1), the diameter of Γ(G, S) is at most n
1

2
lnn(1+o(1)) (Babai-

Hetyei [BH92]).

To appreciate the difficulty of determining the exact diameter with respect to a given
set of generators, we mention two results on the computational complexity of this problem.
For a permutation group G ≤ Sn, it is NP -hard to determine the diameter of Γ(G, S)
even if G is an elementary abelian 2-group (Even, Goldreich [EG81]). For Cayley digraphs
of permutation groups, it is a PSPACE-complete problem to determine the directed
distance of a given pair of group elements (Jerrum [Jer85]).

3.9 Automorphisms of maps

Note. In this section, both finite and infinite graphs will be considered. All surfaces
(2-dimensional manifolds) considered are closed (without boundary) and compact, with
the significant exception of the plane.

One has to make a distinction between the automorphism groups of graphs embeddable
on a surface Σ and the automorphism groups of the maps defined by specific embeddings
X ⊂ Σ.

Recall (cf. Chap. 5) that a map is a graph X embedded on a surface Σ such that the
components of Σ \ X, the faces of the map, are homeomorphic to an open disc. If the
surface Σ is compact, X must be finite. Map-automorphisms preserve incidences between
edges and faces in addition to those between edges and vertices. If v, e, and f denote the
number of vertices, edges, and faces, resp., of a map on a compact surface then

v − e+ f = χ (7)

where χ = χ(Σ) denotes the Euler characteristic of Σ.
Recall that χ ≤ 2 is an integer. If Σ is orientable then χ is even; the quantity g = 1−χ/2

is the genus of Σ; and Σ is homeomorphic to the “sphere with g handles”. If Σ is non-
orientable then g′ = 2 − χ is its non-orientable genus; and Σ is homeomorphic to the
“sphere with g′ crosscaps”. Thus, orientability and the Euler characteristic characterize
all compact surfaces up to homeomorphism.

The compact surfaces of non-negative Euler characteristic are the following: (a) ori-
entable: the sphere (χ = 2) and the torus (χ = 0); (b) non-orientable: the projective
plane (χ = 1) and the Klein bottle (χ = 0).

38



Map-automorphisms extend isomorphically to groups of homeomorphisms of Σ, and
conversely: every finite group G acting on a compact surface Σ acts as a vertex-transitive
group of automorphisms of some map. Unless Σ is the sphere, we may require in addition
that every face has at least 3 sides. (For instance, if G is the trivial group and Σ is the
torus, we shall have a single vertex with two loops, creating a single four-sided face.)

Each non-orientable surface Σ1 has an orientable double cover Σ2, of Euler characteris-
tic 2χ(Σ1). The action of any group G on Σ1 can be lifted isomorphically to an orientable
action on Σ2. The action of G on Σ2 commutes with the sense-reversing “antipodal map”
which switches the pairs of preimages of the covering map Σ2 → Σ1, hence G × Z2 acts
on Σ2. These facts follow from the elements of homotopy theory; cf. [Tuc83, p.96].

To understand finite group actions and maps on compact surfaces, we need to look to
the three natural geometries: the sphere, the Euclidean plane, and the hyperbolic plane.
(These are the only simply connected 2-dimensional complete Riemannian manifolds of
constant curvature.)

Let G be a finite group of homeomorphisms of the compact surface Σ of Euler char-
acteristic χ. Then Σ admits a G-invariant Riemannian metric of constant curvature. The
curvature will be positive, zero, or negative according to the sign of χ(Σ). This makes our
surface Σ locally isometric to the corresponding natural geometry.

Moreover, if M is a vertex-transitive map on Σ, invariant under G, without one-sided
or two-sided faces, then the metric can be chosen so as to make all egdes geodetic and all
faces regular. (Cf. [JS78], and the proof of [ZVC80, Thm. 6.4.7].)

More about the groups and the maps on Σ can be found out by lifting them to Σ̃, the
universal covering space of Σ, which is the natural geometry locally isometric to Σ.

We define a crystallographic group of a natural geometry as a discrete group of isome-
tries with compact fundamental domain 1.

Theorem 3.48. Let G be a finite group acting on the compact surface Σ. Then G lifts to
a crystallographic group G̃ of the natural geometry of its universal cover (sphere, Euclidean
plane, or hyperbolic plane).

(Cf. [ZVC80, Thm. 6.4.7].) The fundamental group π1(Σ) is normal in G̃ and G̃/π1(Σ) ∼=
G.

An Archimedean tiling of a natural geometry is a map of which each face is a regular
polygon and the map admits a vertex-transitive group of isometries.

Theorem 3.49. A vertex-transitive mapM on a compact surface Σ lifts to an Archimedean
tiling of the natural geometry of the universal covering surface Σ̃.

(Cf. the proof of [ZVC80, Thm. 6.4.7].)
One can classify the crystallographic groups of the three natural geometries via canon-

ical codes; each code is associated with a presentation in terms of generators and relations
derived from a pair of dual maps. If two such groups are isomorphic as abstract groups then
their isomorphisms are also geometrically realizable (Wilkie [Wil66], Macbeath [Mac67],
cf. [ZVC80, Theorems 4.5.6–4.7.1]).

1This deviates from common usage in the hyperbolic case where compactness is usually not required.
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The crystallographic groups of the sphere are finite; they are listed in Sec. 1.4. There
are 18 individual types and two infinite one-parameter families of vertex-transitive maps
on the sphere, corresponding to the Platonic and Archimedean solids and the families of
prisms and antiprisms.

By the foregoing remarks, we obtain that the finite group actions on the projective
plane are precisely the actions, on the pairs of antipodal points, of the finite rotation
groups of the sphere.

Vertex-transitive maps on the projective plane correspond to centrally symmetric
vertex-transitive maps on the sphere and are obtained from them by identifying antipodes.

When χ(Σ) = 0, Theorem 3.48 relates G to the classical crystallographic groups of the
Euclidean plane. These were classified in the last century (Fedorov, 1891). There are (up to
natural equivalence) 17 of them (see Coxeter-Moser [CM72, p.44]). Each crystallographic
group G is equivalent to a group of isometries of the plane acting transitively on the points
of a regular triangular, square, or hexagonal grid. It follows that the index of G is not
greater than 12, 8, and 6, resp., in the full group of symmetries of the corresponding grid.
Furthermore, G contains a normal subgroup N generated by two linearly independent
translations, and the quotient G/N is a subgroup of the dihedral group of degree 6 or 4.

Every normal subgroup H of G generated by two linearly independent translations
gives rise to a unique action of G/H on the torus R2/H ; this observation describes all
finite group actions on the torus. (Note, in particular, that all these groups are solvable.)

The situation with the Klein bottle is similar except that the normal subgroup H ⊳ G
must be generated by a translation and a glide-reflection, i.e. a translation followed by
a reflection in an axis parallel to the direction of the translation. This implies severe
restrictions on G. One can prove, in particular, that the square of any rotation belongs
to H , and the subgroup T ≤ G of translations has a subgroup T1 of index ≤ 2 such that
T1/(T1 ∩H) is cyclic.

Corollary 3.50. (a) Let G be a finite group acting on the torus. Then G has an
Abelian normal subgroup N with ≤ 2 generators such that G/N ∼= Zk or Dk, k = 6
or k ≤ 4.

(b) Let G be a finite group acting on the Klein bottle. Then G ∼= Zn, Dn, Z2n × Z2, or
D2n × Z2.

There are 11 types of Archimedean tilings of the Euclidean plane (see the Table). Each
of the tilings gives rise to a 2-parameter family of vertex-transitive toroidal maps.

The vertex-transitive maps without one-sided and two-sided faces on the Klein bot-
tle form 13 families corresponding in different ways to 6 out of the 11 vertex-transitive
Euclidean tilings; each of them have “width 4” in the sense that all vertices belong to 4
straight lines parallel to the glide-reflection axis on the Klein bottle (Thomassen [Tho91],
Babai [Bab91c]). In a similar sense, the degenerate cases have “width” 2 or 1 and are also
known.

When χ(Σ) < 0, the finite groups acting on Σ are quotients of discrete subgroups of
PGL(2,R), the isometry group of the hyperbolic plane. A classical theorem of Hurwitz
(1893) indicates a drastic change compared to the case χ ≥ 0.
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(3.122) (4.6.12) (4.82)

(32.4.3.4) (3.4.6.4) (3.6.3.6)

(34.6) (34.6) (33.42)

(36) (44) (63)

Table: The eleven types of Archimedean tilings of the Euclidean plane (one of them shown
in two mirror-symmetrical forms). After Grünbaum–Shephard [GS81, p.144].
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Theorem 3.51. (Hurwitz) If the finite group G acts on the compact surface Σ of Euler
characteristic χ < 0 then |G| ≤ 84|χ|.

For a proof when Σ is orientable, see e.g. [GT87, p.496]. The general case follows by the
foregoing remarks. There are infinitely many values of χ where the bound 84|χ| is attained
(Conder [Con80]).

The following is a combinatorial generalization of Hurwitz’s Theorem. With each
vertex of a map we associate a cyclically ordered list containing the number of sides of
each face incident with the vertex. We call a map semiregular if the cyclic list associated
with each vertex is the same (up to inversion).

Theorem 3.52. ([Bab91c]) Let M be a semiregular map on a compact surface of Euler
characteristic χ < 0. Then M has at most 84|χ| vertices.

Each homeomorphism ψ of a compact orientable surface Σ of genus g induces an
automorphism ψ∗ of the first homology group H1(Σ) ∼= Z2g which preserves a skew-
symmetric bilinear form H1(Σ) × H1(Σ) → Z, defined by the intersection numbers of
curves, cf. [ZVC80, Prop. 3.6.3]. Another result of Hurwitz (1893) states that if ψ has
finite order and g ≥ 2 then ψ∗ 6= 1. Consequently, if G is a finite group of homeomor-
phisms of Σ then G is isomorphic to a subgroup of Sp(g,Z), the group of 2g× 2g integral
symplectic matrices (cf. [ZVC80, Cor. 4.15.3], [Big72]). This result also holds for the
homology groups mod n for any n ≥ 3 (Serre 1960, cf. [ZVC80, Cor. 4.15.15]).

3.10 Embeddings on surfaces, minors

Note. All graphs and groups in this section are finite, except in the last paragraphs
(beginning after Theorem 3.60).

Now we turn to the question of classifying the connected vertex transitive graphs em-
beddable on a given surface. If an embedding of the graph X on the surface Σ creates a
map and all automorphisms of X extend to map-automorphisms then we call the embed-
ding automorphic. The main difficulty is that embeddings are seldom automorphic. Some
of the most surprising results in the area infer the existence of automorphic embeddings
from seemingly unrelated asymptotic combinatorial assumptions.

Apart from cycles, vertex transitive graphs have degree ≥ 3 and are therefore 3-
connected. For planar graphs this implies unique embeddability on the sphere, hence
those embeddings are automorphic, and the list of 18 types plus two infinite one-parameter
families mentioned above applies.

For no other surface Σ have the vertex-transitive graphs embeddable on Σ been fully
classified. Interest in embedding Cayley graphs on surfaces has been motivated since
the last century by the following observation: Cayley graph embeddings help in finding
presentations (generators and relations) for G.

Proposition 3.53. Let X = Γ(G, S) be embedded on Σ. Let the cycles C1, . . . , Cm of X
through 1 generate the fundamental group of Σ. Let further D1, . . . , Df−1 denote all but
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one of the fundamental cycles (face boundaries) of the embedding. Then the Ci and the
Dj , regarded as words in the symbols S ∪ S−1, form a complete set of relations defining
G. — If the map is vertex-transitive, only those Dj passing through 1 have to be taken.

Proof: Every cycle in the Cayley graph indicates a valid relation among the generators.
We have to show that every cycle A represents a consequence of the relations listed. We
may assume A passes through 1. Then A, as a path on Σ, is homotopic to some product
P of the Ci. It follows that AP−1 is contractible and therefore representable as a product
of the Dj . 2

Maschke [Mas96] determined all planar minimal Cayley diagrams. (Recall that we call
Γ(G, S) and Γc(G, S) minimal if S generates G with no redundant elements.) Nonplanar
toroidal minimal Cayley diagrams have been classified by Proulx. Her list contains 11
infinite classes with two generators, 9 infinite classes with 3 generators, 1 infinite class
with 4 generators, and 9 sporadic cases (8 with 2 generators, 1 with three). We state the
main consequence.

Theorem 3.54. (Proulx [Pro77]) All but 3 of the groups admitting a toroidal but
no planar Cayley graphs are quotient groups of Euclidean 2-dimensional crystallographic
groups and therefore they actually admit automorphically embedded toroidal Cayley
graphs.

The precise set of 3 exceptions (of orders 24, 48 and 48) has been determined by
Tucker [Tuc84]. Using in great detail Proulx’s analysis, Tucker went on to proving an
extension of Hurwitz’s theorem to Cayley graphs embeddable on surfaces of negative Euler
characteristic.

Theorem 3.55. (Tucker [Tuc84]) Let G be a group of order n and Γ(G, S) a minimal
Cayley graph of G, embeddable on a surface Σ of Euler characteristic χ < 0 but not
embeddable on the torus. Then |G| ≤ 84|χ|.

We indicate some of the basic tricks of the Proulx-Tucker theory on a very simple
special case.

Proposition 3.56. Let G be a group of order n where g.c.d. (n, 6) = 1. Assume G
has a minimal Cayley graph X embeddable on a surface Σ of Euler characteristic χ. If
n > −5χ, then G is Abelian with two generators and X is toroidal.

Proof: Let X = Γ(G, S) have degree d ≥ 3. Since G has no elements of order 3, the
girth of G is ≥ 4. Now X has n vertices, e = nd/2 edges, and f ≤ nd/4 faces. Substituting
into the Euler equation 7 we obtain

n(1 − d/4) ≥ χ.

If d ≥ 5, we infer n ≤ −4χ. If d = 3 then one of the generators would have to be an
involution, impossible. The only remaining case is d = 4; hence e = 2n and S consists of
2 elements: S = {a, b}.
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Assume first that the girth of X is ≥ 5. Let fi denote the number of i-sided faces. We
then have 2e =

∑
i≥5 ifi and f =

∑
i≥5 fi ≤ 2e/5 = 4n/5. Hence

χ = n− e+ f ≤ n− 2n+ 4n/5 = −n/5.

We conclude that n ≤ −5χ, thus finishing this case.
We may henceforth assume that the girth ofX is 4. By minimality, the implied relation

of length 4 must be of one of the following types: (a) a4 = 1; (b) abab = 1; (c) aba−1b = 1;
(d) a2b2 = 1; (e) aba−1b−1 = 1.

Since G has odd order and S is minimal, only case (e) can actually occur. But then,
G is Abelian with two generators, hence it is toroidal. 2

While the arguments that count degrees and use the Euler equation generalize to
arbitrary vertex transitive graphs, the “relation chasing” that concluded the proof has no
analogue. Arguments of a more geometric flavor, however, yield the following.

Theorem 3.57. (Thomassen [Tho91], Babai [Bab91c]) There exists a function f
such that every connected vertex transitive graph X with more than f(χ) vertices and
embeddable on a surface of Euler characteristic χ admits an embedding as a vertex-
transitive map on a surface of nonnegative Euler characteristic.

The function f is bounded by c|χ| where c is an absolute constant ([Tho91]). With
the exception of 4 families of “crossed stripe-like” graphs ([Bab91c]), the embeddings
guaranteed by the theorem are automorphic.

Embeddings of specific Cayley graphs, in particular of complete graphs viewed as Cayley
graphs of cyclic groups, have been studied extensively. The original motivation for this was
the solution, due mainly to Ringel and Youngs [RY68], of the Heawood map color conjec-
ture. (For details and references, we refer to the monograph of Gross and Tucker [GT87].)
Subsequently, the following concept gained popularity.

Definition 3.58. The genus of a (finite) group G is the minimum of the genera of those
orientable compact surfaces Σ on which some connected Cayley graph of G is embeddable.
The non-orientable genus of G is the minimum of (2 − χ(Σ)) over the corresponding not
necessarily orientable surfaces Σ.

Both the orientable and non-orientable genera are monotone for subgroups [Bab77a].
(This follows immediately from Prop. 3.59 below.) It is an open question whether or not
the same holds for quotient groups, as conjectured by A. T. White [Whi73]. Jungerman
and White were able to determine the precise genus for surprisingly large classes of abelian
groups [JW80], demonstrating that those groups admit embeddings with quadrilateral
faces. The situation becomes more complicated when Z3 factors are present and triangular
faces may arise.

Contractions tend to simplify the topological characteristics of a graph. Significantly,
they can be related to group actions.
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Proposition 3.59. (The “Contraction Lemma”) If the group G acts semiregularly
on the connected graph X then X has a contraction to some Cayley graph of G. In
particular, if G ≤ H then every Cayley graph of H has a contraction to some Cayley
graph of G ([Bab73],[Ser77]).

(Semiregular action means that the stabilizer of every vertex is the identity.) An
immediate consequence is the Nielsen-Schreier Theorem that subgroups of free groups are
free.

The Hadwiger number of a (not necessarily finite) graph X is the supremum of those
values k such that some component ofX has a contraction ontoKk. The Hadwiger number
of graphs embeddable on a fixed surface is bounded (e. g. for the torus, this bound is 7).
The converse does not hold. Nonetheless, one can give an asymptotic classification of all
finite vertex-transitive graphs with bounded Hadwiger numbers.

Theorem 3.60. ([Bab]) There exists a function f such that every finite connected vertex-
transitive graph X of Hadwiger number ≤ k is either (a) toroidal, admitting an automor-
phic embedding on the torus, or (b) ring-like in the following sense: V (X) has a partition
(V0, . . . , Vm−1) into blocks of imprimitivity such that (b1) |Vi| < f(k); (b2) if there is an
edge between Vi and Vj then |i− j| < f(k) or m− |i− j| < f(k); (b3) the action of AutX
on the set of blocks is either cyclic or dihedral.

The proof requires the study of the local structure of the graphs via an infinite vertex-
transitive “limit graph” (cf. [Bab91c]) and distinguishes cases according to the number of
ends of the limit graph, using Prop. 3.31. The case of infinitely many ends is disposed of
using a sphere packing argument ([Bab91c]) motivated by Thomassen’s proof that graphs
of degree ≥ 3 and large girth have large Hadwiger number ([Tho83])

The case of two ends yields ring-like graphs, using Dunwoody’s Theorem 3.37. The
hard case is when the limit has a single end. The analysis requires the following result.

Theorem 3.61. ([Tho92]) Let X be an infinite locally finite connected vertex-transitive
graph with a single end. If X has finite Hadwiger number then X is planar.

Such an infinite graph, then, can be shown to have a natural associated geometry (along
the lines of Thm. 3.49, cf. [Bab]):

Theorem 3.62. Let X be an infinite locally finite connected vertex-transitive planar
graph with a single end. Then X has an automorphic embedding as a tiling of the Eu-
clidean or hyperbolic plane.

Returning to the sketch of the proof of Theorem 3.60, we observe that Euclidean tilings
give rise to toroidal graphs. Hyperbolic tilings lead to finite graphs of large Hadwiger
number, via another sphere packing argument, using the elements of hyperbolic geometry.
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3.11 Combinatorial group theory

Combinatorial group theory investigates presentations of groups defined in terms of gener-
ators and relations. Typical constructions in this field are the free product with amalgams,
and HNN-extensions (cf. Section 3.7). One of the classical results is the Nielsen-Schreier
theorem that every subgroup of a free group is free. This, incidentally, follows immediately
from the Contraction Lemma (Prop. 3.59). Indeed, among the groups with no elements
of order 2, precisely the free groups have trees for Cayley graphs; and a contraction of a
tree is a tree again.

There is no way we could do justice to this vast area in a tiny amount of space like
this; the reader is referred to the monographs by Coxeter-Moser [CM72], Magnus-Karrass-
Solitar [MKS66], Lyndon-Schupp [LS77], Serre [Ser80], Dicks-Dunwoody [DD89]. The
elementary graph theoretic approach to classical subgroup theorems is emphasized in Im-
rich’s friendly notes [Imr77]. When proving subgroup theorems such as Kurosh’s theorem
stated at the end of this section, the basic geometric object to consider is the factor of a
Cayley diagram of the group G by the action of the subgroup H (Schreier coset diagram).
An example of an interesting result in this area proved by an elementary graph theoretic
argument is Howson’s theorem: the intersection of two finitely generated subgroups of a
free group is finitely generated [Imr77], [DD89, I.8], [Tar92].

Some of the results mentioned earlier in this chapter belong to Combinatorial Group
Theory (e.g. Proposition 3.53 or Dunwoody’s Theorem 3.36).

A relatively recent highlight is the Bass-Serre theory, the basic technique of which
is group actions on trees. They introduce a construction called a graph of groups in
which a group G(v) is assigned to each vertex v of a directed graph and a subgroup
G(v, w) ≤ G(v) to every directed edge (v, w), along with an injective homomorphism
tv,w : G(v, w) → G(w). The fundamental group of a graph of groups is defined as a group
generated by the disjoint union of theG(v) along with one symbol tv,w for every edge (v, w),
subject to the relations defining G(v) for each v, and the relations t−1

v,wgtv,w = gtv,w for each
edge (v, w) and element g ∈ G(v, w). (Note that therefore g ∈ G(v) and gtv,w ∈ G(w).)
Moreover, we select an arbitrary maximal subtree of the graph, and set tv,w = 1 for every
edge (v, w) in the tree.

Observe that if the graph consists of a single directed edge (v, w) then the fundamental
group will be the free product of G(v) and G(w), with the subgroup G(v, w) amalgamated.
If the graph has a single vertex v with a loop (v, v) then the fundamental group is the
HNN extension (G(v), G(v, v), tv,v). This is a restatement of Theorems 3.34 and 3.35.

Let now G be a group acting on a tree T without inverting edges. Then the Bass-Serre
structure theorem asserts that G is isomorphic to the fundamental group of a graph of
groups, where the graph is the factor graph of T by the action of G [Ser80, Sec. I.5.4],
[DD89, Sec. I.4].

Among the immediate consequences is Kurosh’s classical subgroup theorem, asserting
that a subgroup of a free product of the groups Gi is a free product of a free group and
conjugates of subgroups of the Gi.
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3.12 Eigenvalues

Let α : G → C be a function, and consider the n × n matrix A = (ag,h), whose rows as
well as columns are labeled by the elements of G (in the same order, n = |G|), and

ag,h = α(gh−1).

We can think of α as a “color assignment” to the elements of G; thus A is the adjacency
matrix of a Cayley color diagram. We call A a G-circulant, since in the case G = Zn we
obtain precisely the circulant matrices.

In the circulant case, detA has a well known expansion into linear factors. Let ω
denote a primitive nth root of unity; then the vectors wi = (1, ωi, ω2i, . . . , ω(n−1)i) form a
system of orthogonal eigenvectors of A, with corresponding eigenvalues

λi =
∑

k

α(k)ωik. (8)

The determinant of A is
∏

i λi.
Examining the expansion of detA for the dihedral groups, Dedekind noticed that

(viewing each value α(g) as an independent variable), most irreducible factors were no
longer linear but quadratic, and called on Frobenius in a letter to investigate the general
case. Frobenius soon found a wealth of structure; his paper “Über die Primfactoren der
Gruppendeterminante”, presented to the Prussian Academy of Sciences in 1896, laid the
foundations of character theory for nonabelian groups.

A consequence of this theory is, that, denoting the dimensions of the irreducible char-
acters of G by n1, . . . , nh (h is the number of conjugacy classes in G; and

∑
n2

i = n), the
eigenvalues of any G-circulant can be assigned to irreducible characters in the following
way: n2

i eigenvalues correspond to character χi; these fall into ni equal groups, and all the
ni eigenvalues within a group are equal. Moreover, the sum of the potentially different ni

eigenvalues (one from each group of ni) belonging to χi is

λi,1 + . . .+ λi,ni
=

∑

g∈G

α(g)χi(g). (9)

(See [Bab79d].) In particular, if G is abelian, then each ni = 1, and the expression
simplifies to

λi =
∑

g∈G

α(g)χi(g), (10)

a direct generalization of the circulant case (eqn. (8)).
As an example, let X = X(n, k) denote the distance-k graph of the n-dimensional

cube. Let A be an n-set and let us represent the elements of the n-cube by subsets of A.
With the operation of symmetric difference, this set is the elementary abelian group Zn

2

and X = Γ(Zn
2 , Sk) where Sk is the set of all k-subsets of A. Characters χT : Zn

2 → {±1}
are associated with subsets T ⊆ A via the rule χT (B) = (−1)|T∩B|. The corresponding
eigenvalue of X is λT =

∑
|B|=k(−1)|T∩B| = Kk(|T |), where

Kk(x) =

k∑

i=0

(−1)i

(
x

i

)(
n− x

k − i

)
(11)
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is the Krawtchouk polynomial (cf. [BI84, Sec.3.2]).
A more general class of G-circulants, admitting an explicit expression of their eigen-

values, are obtained when α is a class function, i.e. α is constant on conjugacy classes.
(In other words, α(gh) = α(hg) for every g, h ∈ G.) In this case all the n2

i eigenvalues
belonging to χi are equal, and hence their common value is λi = (1/ni)

∑
g∈G α(g)χi(g)

and the matrix A is diagonalizable (via a unitary transformation).
It follows from the above that if the set S of generators is closed under conjugation

then the adjacency matrix of the Cayley digraph ~Γ(G, S) is diagonalizable. This is not
true for general S; Godsil [God82] has shown that the minimal polynomial of any integral
matrix divides the minimal polynomial of some Cayley digraph.

Cayley graphs of cyclic groups of prime order are determined up to isomorphism by
their characteristic polynomials (Elspas, Turner [ET70]). This is not true for general
groups; families of isospectral Cayley graphs of the dihedral groups of all odd prime degrees
are exhibited in [Bab79d].

The results discussed above belong to the harmonic analysis over G. For an exposition
and a variety of applications (especially to random walks) of the formulas given, see
Diaconis [Dia88, Ch. 3], [Dia89]; Chillag [Chi88].

For the extensive literature on the harmonic analysis over locally finite infinite graphs
we refer to the survey [MW89].

4 The representation problem

The material of this section is covered in greater detail in the survey paper [Bab81b] where
additional references and in many cases complete proofs can be found.

4.1 Abstract representation; prescribed properties

In this section we consider the following type of problem: given a group G find a graph
X (or a block design, a lattice, a ring, etc.) such that the automorphism group Aut(X)
is isomorphic to G. Such an object X will be said to represent the group G. A class C of
objects is said to represent a class G of groups if, given G ∈ G there exists X ∈ C such
that Aut(X) ∼= G. We call C universal, if every group is represented by C. We say that
C is finitely universal if every finite group occurs among the groups represented by finite
members of C.

The natural question, which groups are represented by graphs, was stated by König
[Kön36, p.5], and soon answered by Frucht:

Theorem 4.1. ([Fru38]) Given a finite group G there exists a finite graph X such that
Aut(X) ∼= G. In other words, graphs are finitely universal.

Frucht’s proof has been reproduced in several texts [Ore62], [Har69], [Lov79a], [Bol79].
The idea is (i) to observe that the automorphism group of the (colored, directed) Cayley
diagram of G with respect to any set of generators is isomorphic to G; (ii) to get rid
of colors and orientation by replacing colored arrows by appropriate small asymmetric
(automorphism free) gadgets.
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The next problem was to find subclasses of graphs and classes of other (combinatorial,
algebraic, topological) objects that are universal. This direction was initiated by Frucht
and Birkhoff. Frucht proved that trivalent graphs are finitely universal [Fru49]. It is
immediate from Theorem 4.1 that posets are finitely universal. Since posets are strongly
reconstructible from their lattice of ideals (as the poset of join-irreducible elements), it
follows that distributive lattices are finitely universal (as well as universal, Birkhoff [Bir45]).
(Cf. [Bab81b] for proofs and further references.)

These results already foreshadow the lopsidedness of later developments. Take almost
any “reasonably broad” class of combinatorial or algebraic structures; the class will be uni-
versal. (Groups, planar graphs are notable exceptions.) This “universality phenomenon”
was first indicated by Sabidussi [Sab57]; he proved that Hamiltonicity, k-regularity, k-
connectedness are all compatible with any prescribed automorphism group. Universality
results in topology and algebra were inspired by de Groot’s papers [Gro58], [Gro59], where
topological spaces and commutative rings were shown to be universal. A surprisingly
strong version of the latter result was given by E. Fried and J. Kollár:

Theorem 4.2. (Fried, Kollár [FK78],[FK81]) Every group is the automorphism group
of a field. Every finite group is the automorphism group of an algebraic number field.

(Algebraic number fields are finite extensions of Q.) The proof takes a graph X with
the given automorphism group and encodes it into a field (not without ingenuity). This
is the basic scheme of most universality proofs.

The extensions constructed by Fried and Kollár are not normal. Therefore their result
does not bear on the inverse problem of Galois theory (represent a given group as a Galois
group over a given field; notably, over Q). We note in passing that the inverse problem
has had its renaissance in the past decade, inspired by J. G. Thompson’s new approach
[Tho84] (cf. Feit [Fei89], Matzat [Mat87], several articles in [A+85]). One of Thompson’s
corollaries states that the Monster, the largest sporadic simple group, is a Galois group
over Q.

Of the numerous combinatorial universality results, let me quote two of the more
surprising ones.

Theorem 4.3. (E. Mendelsohn [Men78b], [Men78a]) Every finite group is the au-
tomorphism group of (a) a Steiner triple system and a Steiner quadruple system; (b) a
strongly regular graph.

Universality proofs usually require reconstruction arguments. To illustrate this point,
we deduce Mendelsohn’s result (b) from (a). Let X be a Steiner triple system with the
prescribed automorphism group G. Take its line graph L(X). L(X) is strongly regular,
and, according to Theorem 1.12, X is strongly reconstructible from L(X), assuming X
has > 15 vertices. In particular, Aut(X) ∼= Aut(L(X)) (Cor. 1.13(a)). 2

The automorphism group is very sensitive to slight changes in the graph. It is known,
for instance, that for any pair of groups G and H there exists a graph X and an edge
e ∈ E(X) such that Aut(X) ∼= G and Aut(X \ e) ∼= H (Babai, see [Lov79a, Ex.12.11]).
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It is typical for universality proofs that the group structure plays little role. The extent
to which group structure can be ignored is demonstrated by generalizations to prescrib-
ability of semigroups of endomorphisms and even categories, pioneered by the Prague
category theory school, especially Pultr and Hedrĺın. A homomorphism of the graph X
to the graph Y is an adjacency preserving map V (X) → V (Y ). Note that non-adjacent
vertices may have the same image. Endomorphisms of a graph X are homomorphisms
X → X. They form the monoid End(X). (Monoid = semigroup with identity.) The basic
result is that every monoid is the endomorphism monoid of some graph (finite graphs for
finite monoids) (Hedrĺın, Pultr, Vopeňka). By encoding graphs, many classes of algebraic
and topological structures have been shown to have the same property (see the monograph
by Pultr and Trnková [PT80]). A nice introduction to the subject is [HL69].

Universality-type results are known for some classes of structures that are clearly not
universal.

Theorem 4.4. (a) The automorphism groups of (finite) tournaments have odd order;
and every finite group of odd order is represented by a tournament ([Moo64]).

(b) G is the automorphism group of a switching class of tournaments if and only if its
Sylow 2-subgroups are cyclic or dihedral ([BCa]). (Two tournaments T1, T2 on the
common vertex set V are switching equivalent if V can be partitioned into two classes
such that one obtains T2 from T1 by reversing all edges between the two classes. This
equivalence relation divides the set of tournaments on V into switching classes.)

(c) Denote by Γd the class of groups G with a subgroup chain G = G0 ≥ G1 ≥ . . . ≥
Gm = 1 such that |Gi−1 : Gi| ≤ d for every i. If X is a connected regular graph of
degree d + 1 then the stabilizer of an edge in X belongs to Γd; and every group in
Γd can be represented this way ([BL73a]).

It is an open problem to show that the finite projective planes are not finitely universal,
i.e., not every group is isomorphic to the automorphism group of a finite projective plane.
Indeed it seems plausible that most finite groups cannot act on a finite projective plane
(as a subgroup of the automorphism group), but no group has been ruled out so far.
C. Hering [Her67] proved that for n ≡ 3 (mod 4), any 2-group acting on a projective
plane of order n must be cyclic, a (generalized) quaternion group, a dihedral group, or a
quasidihedral group.

4.2 Topological properties

Topological properties of a graph (embeddability on a surface, excluded minors) do restrict
the abstract group of automorphisms and thus offer a welcome source of connections
between the structure of groups and the graphs representing them. The following general
non-universality result says that prescribed automorphism groups force arbitrary minors
to occur.

Theorem 4.5. (Babai [Bab74a]) Given a finite graph Y there exists a finite group G
such that every graph X with Aut(X) ∼= G has Y as a minor.
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Let C(Y ) be the class of finite graphs without Y as a minor. It is expected that the
finite groups represented by C(Y ) have a very restricted structure. In particular, it is
conjectured that the list of nonabelian finite simple groups represented by C(Y ) is finite
(cf. [Bab81b]).

Excluding a topological subgraph is, in general, less restrictive than excluding a minor;
indeed even the exclusion of vertices of degree ≥ 4 does not restrict the abstract automor-
phism group. However, prescribed endomorphism monoids do force arbitrary topological
subgraphs: another strong non-universality result.

Theorem 4.6. (Babai, Pultr [BP80]) Given a finite graph Y there exists a finite
monoid M such that for every graph X, if End(X) ∼= M then X contains a subdivi-
sion of Y .

4.3 Small graphs with given group

The number of orbits is a measure of symmetry. It is natural to ask, how symmetrical the
graphs representing a given group can be. When talking about the orbits of a graph, we
mean the orbits of its automorphism group on the vertex set. Edge-orbits are orbits on
the edge set.

With three exceptions, every finite group can be represented by a graph with ≤ 2
orbits ([Bab74b]). (The exceptions are the cyclic groups of orders 3, 4, and 5.)

Most groups even admit a representation by a vertex-transitive graph. Nowitz [Now68]
and Watkins [Wat71] described an infinite family of groups without a vertex-transitive
representation (abelian groups of exponent greater than 2, and generalized dicyclic groups).
Hetzel [Het76] and Godsil [God81a] proved that apart from these, there is only a finite
number of additional exceptions, each of order ≤ 32. Godsil extended this result to finitely
generated infinite groups [God79].

A graphical regular representation (GRR) of a group G is a graph X such that Aut(G)
is regular and isomorphic to G. In other words, X is a Cayley graph of G without “extra”
automorphisms (all automorphisms correspond to right translations, cf. Sec. 3.1).

The graphs Hetzel and Godsil construct are actually GRR’s and the result stated
contitutes the full solution of the GRR problem: the characterization of all finite groups
which admit a GRR. For certain classes of groups G, including all nonabelian nilpotent
groups of odd order, one can actually show that almost all Cayley graphs of G are GRR’s
([BG82]). (To obtain a random Cayley graph Γ(G, S), one chooses a symmetrical set
S = S−1 ⊆ G at random.)

The analogous problem for digraphs is easier: with 5 exceptions, all groups (finite or
infinite) have a digraphical regular representation [Bab80a], [Bab78c]. (The exceptions are
the elementary abelian groups of orders 4, 8, 9, 16, and the quaternion group of order
8. For infinite groups, the proof employs infinite Ramsey theory, cf. Chap. 42.) A
consequence is that every infinite group can be represented by a graph X with 3 orbits.

The situation is quite different when we wish to minimize the number of edge-orbits.
First of all, if X is a graph representing the group G with a semiregular automorphism
group (as has been the case so far in this section as well as in most constructions related
to Sec. 4.1) then the number of edges of X is at least nd/2, where n = |G| and d is the
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minimum size of a symmetrical set of generators. (This is a consequence of the Contraction
Lemma 3.59.)

Let e(G) denote the minimum number of edges and me(G) the minimum number of
edge orbits of the graphs representing G. Clearly e(G)/|G| ≤ me(G) and it is easy to
see that me(G) < C log |G|. Two natural questions arise: (a) is me(G) bounded? (b) Is
e(G)/|G| bounded? – We now have a fairly complete answer to both questions.

Theorem 4.7. (a)[BG91] For all finite groups, e(G)/|G| < 500. (b)[BGL91] If a finite
group is generated by k abelian subgroups then me(G) ≤ Ck for some absolute constant
C. (Note that e.g. any direct product of finite simple groups is generated by k = 2
abelian subgroups.) (c)(Goodman [Goo93]) There is a constant c > 0 such that for
infinitely many finite groups G, me(G) > c

√
log |G|. (d)(S. Thomas [Tho87]) Assuming

the Generalized Continuum Hypothesis, for every successor cardinal κ there exists a group
G of order κ such that me(G) = κ.

The proof of (b) is related to a generalization of a result of Gel’fand and Ponomarev
[GP70] that the subspace lattice of a vector space of finite dimension ≥ 3 over a prime
field is generated by 4 subspaces. The proof of (c) has a curious nonconstructive element:
certain p-groups of class two, demonstrating the lower bound, are shown to exist by a
probabilistic (counting) argument. No explicit family of finite groups with unbounded
me(G) is known. The groups required for the proof of (d) are Jónsson groups, i.e. groups
having no proper subgroups of their own cardinality. Shelah proved the existence of such
groups for successor cardinals under G.C.H. [She80]. Without G.C.H., no proof is known
of the conjecture that me(G) can be an arbitrarily large cardinal. 2

Some classes of groups are represented by drastically smaller graphs. This is clear for
the symmetric groups (graphs of order k represent the group of order n = k!), but less
evident for the alternating groups (graphs of order < 2k+1 represent the alternating group
of order k!/2). M. Liebeck determines the exact minimum order of graphs representing the
alternating group Ak for sufficiently large k [Lie83] (e.g. for k ≡ 0, 1 (mod 4) he finds
this minimum to be 2k − k − 2). (For small k, there are surprises, e.g. A8

∼= PSL(4, 2)
is the automorphism group of a 30-vertex graph: the incidence graph of the projective
geometry PG(3, 2).) Liebeck also gives strong lower bounds for the minimum order of
graphs representing 3 types of classical simple groups (linear, orthogonal, unitary).

We mention related open problems. Let G be a group of order n. It follows from part
(a) of the above theorem that G can be represented by a lattice of size O(n). Can G be
represented (i) by a lattice with a bounded number of orbits? Can G be represented by a
polynomial size (nO(1)) (ii) Steiner triple system, (iii) strongly regular graph, (iv) modular
lattice ? We conjecture the negative answer to (iv) but positive answers to (i), (ii), (iii).

4.4 The concrete representation problem, 2-closure

Let G ≤ Sym(V ) be a permutation group, acting on the set V . The set of graphs X =
(V,E) admitting G as a subgroup of Aut(X) is easily described; their number is 2k where
k is the number of orbits of the induced action of G on the set of

(
|V |
2

)
pairs.
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The concrete representation problem asks if G = AutX for some graph (digraph, etc.)
with vertex set V . This problem is very difficult in general, as the case of regular per-
mutation groups (the GRR problem, Sec. 4.3) has demonstrated. But there is a simple
necessary condition.

Let us consider the colored complete directed graph W with vertex set V obtained
from G as follows. Two pairs of vertices receive the same color if and only if they belong
to the same orbit of the induced action of G on V × V . Vertex v receives the color of the
pair (v, v). This is the coherent configuration corresponding to the group G. We define
W ∗ to be the undirected version of W : unordered pairs receive colors.

We call Aut(W ) the 2-closure of G, and Aut(W ∗) the 2∗-closure. In other words, the
2-closure of G is the largest subgroup of Sym(V ) with the same orbits on V × V ; and the
2∗-closure the largest subgroup with the same orbits on points and unordered pairs.

The group G is 2-closed if G is equal to its 2-closure; 2∗-closed groups are defined
analogously. A group is 2-closed if and only if it is the automorphism group of a colored
directed graph; and 2∗-closedness corresponds to colored undirected graphs. These are
thus necessary (but not sufficient) conditions for the group to be the automorphism group
of a digraph (graph).

All regular permutation groups are 2-closed. Not all of them are 2∗-closed; the excep-
tions are precisely the abelian groups of exponent greater than two and the generalized
dicyclic groups ([Bab77b]).

For transitive permutation groups G, Godsil [God81b] gives further necessary condi-
tions which for some class of nilpotent groups turn out also to be sufficient.

It is an interesting question, how far the 2-closure cl2(G) is from a group G. Liebeck,
Praeger, and Saxl [LPS88a] investigate this for the case when G is primitive and almost
simple, i. e. L ⊳ G ≤ Aut(L) for some simple group L. If G is 2-transitive then cl2(G) =
Sym(V ); but the gap is much smaller in all other cases. Indeed [LPS88a] find that cl2(G)
normalizes G, with the exception of six sporadic cases (the largest degree occurring in a
representation of degree 276 of the Mathieu groupM24) plus two surprising infinite families
of unbounded ranks with socles L = G2(q) and Ω7(q), resp.

The notion of 2-closure as a tool in the study of permutation groups was introduced
by I. Schur, see H. Wielandt [Wie69].

A maximal, not doubly transitive subgroup of Sn is necessarily 2-closed. This observa-
tion was used by L. A.Kaluzhnin and M. H. Klin (1972) (cf. [KMF91]) to give elementary
proofs of the maximality of several classes of primitive groups, including the induced ac-
tion of Sm on k-tuples (n =

(
m
k

)
), with some restrictions on (m, k). (For a complete study

of this question via the classification of finite simple groups, see [LPS87a].)

It is natural to ask which permutation groups arise as the automorphism groups of a
hypergraph. If the sizes of the edges are not restricted, we have a nearly complete answer
for primitive groups. Obviously, An 6= Aut(X) for any hypergraph X on n vertices.
Apart from the alternating groups and an (unknown) finite family of other exceptions, all
primitive groups G occur as Aut(X) for some edge-transitive hypergraph [BCb]. Exceptions
include all set-transitive groups: the Frobenius group of order 20 (n = 5), PGL(2, 5)
(n = 6), PGL(2, 8), PΓL(2, 8) (n = 9). Another exception is the Frobenius group of order
21 (n = 7).
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5 High symmetry

As in the Introduction, we shall use the abbreviation CFSG to indicate the Classification
of Finite Simple Groups. CFSG has played a decisive role in the recent development of
some of the subjects to be discussed below; we shall try to indicate where this is the case.

5.1 Locally s-arc-transitive graphs

All graphs in this section will be assumed finite and connected.
Let s ≥ 1. An s-arc starting at a vertex v0 in a graph X is a sequence (v0, . . . , vs) of

vertices such that vi−1 (1 ≤ i ≤ s) and vi are adjacent and vi−1 6= vi+1 (1 ≤ i ≤ s− 1). A
group G ≤ Aut(X) is locally s-arc-transitive on X if for every vertex v0, the stabilizer of
v0 in G acts transitively on the s-arcs starting at v0. If in addition G is vertex-transitive
then G is s-arc-transitive. Otherwise X is clearly bipartite and G acts transitively on each
color-class. For s = 1, s-arc-transitivity is the same as flag-transitivity.

X is called (locally) s-arc-transitive if the action of Aut(X) is (locally) s-arc-transitive.
We shall always assume that X is not a cycle (which is s-arc-transitive for every s).

Having excluded the cycles, local s-arc-transitivity implies large girth: the girth must
be ≥ 2s− 2. Hence in a locally s-arc-transitive graph, all s-arcs are paths.

For trivalent s-arc-transitive graphs, Tutte [Tut47] proved the astonishing result that s
must be bounded: s ≤ 5 (cf. [Big74, Ch. 18]). He showed that s = 5 is attained by a graph
C8 called an “8-cage”, a trivalent graph of girth 8 with 1440 vertices; Aut(C8) ∼= Aut(S6)
where S6 is the symmetric group of degree 6 (cf. [Big74, p.125]). By the covering con-
struction of Theorem 1.6 we infer that there are infinitely many trivalent 5-arc-transitive
graphs.

Tutte’s result was generalized to locally s-arc-transitive graphs in a remarkable self-
contained 4-page paper by R. M. Weiss [Wei76b].

Theorem 5.1. (R.M. Weiss) Let G be a locally s-arc-transitive but not (s + 1)-arc-
transitive group acting on a trivalent graph. Then s ≤ 7 and s 6= 6.

The bound 7 is attained by the 12-cage (Tits [Tit59, Appendix], cf. Benson, Glea-
son [Ben66]).

A group G is (locally) s-regular if G is (locally) s-arc-transitive and the stabilizer of
each s-arc is the identity. This is a somewhat artificial concept except for degree 3 when it
occurs naturally: a trivalent edge-transitive graph is locally s-regular for some s. Let G be
a locally s-regular group on a trivalent graph, and Gv a vertex-stabilizer; then |Gv| = 3 ·2s,
the number of s-arcs starting at v. Weiss’s bound s ≤ 7 thus implies that there is only a
finite number of possibilities for the vertex stabilizer in a trivalent edge-transitive graph.
These possibilities were classified by Tutte for the flag-transitive (and therefore s-regular)
case.

For the edge-transitive (and therefore locally s-arc-transitive) case the object to be
classified is the pair of vertex-stabilizers of an adjacent pair of vertices together with their
intersection, (Gu, Gv, Gu ∩Gv). D. M. Goldschmidt [Gol80] classified all these triples and
found that there were precisely 15 of them. Goldschmidt’s 30-page work is motivated
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by the examples afforded by the (bipartite) incidence graphs of “buildings” associated
with rank-2 BN pairs over GF (2), occurring in the study of certain classes of groups of
Lie type. Goldschmidt’s “amalgam method” was the starting point of an important new
theory [DGS85], used among others for some aspects of “revisionism”, the study of finite
simple groups without the use of CFSG.

Tutte’s 1947 theorem was extended a third of a century later to s-arc-transitive graphs
of arbitrary degree: R. M. Weiss showed, using heavy guns, that s ≤ 7 holds for s-arc-
transitive graphs of arbitrary degree [Wei81]. Noting that the stabilizer Gv of a vertex v in
a locally 2-arc-transitive group G acts doubly transitively on the neighbors of v, he was
able to invoke the classification of the doubly transitive permutation groups, available as a
consequence of CFSG (cf. Chap. 12). Weiss proves that if s ≥ 4 then the action of Gv on
the set X(v) of neighbors is either affine (has an elementary abelian normal subgroup; in
particular the degree is a prime power), or it includes the linear fractional group PSL(2, pα)
as a normal subgroup in its action on the projective line of |X(v)| = pα + 1 points. Here
either s = 4, or p ≤ 3 and s ≤ 2p+ 1.

One of the key ingredients in much of the work on arc-transitive graphs was the fol-
lowing theorem, magically singling out a prime number, characteristic for the graph. The
result is due to J. G. Thompson and H. Wielandt and was adapted by A. Gardiner [Gar73]
in this context (cf. [BCN89, ch. 7.2]). For a subset S ⊆ V (X), let Xd(S) denote the set
of vertices within distance d from S (so e.g. X0(S) = S). We use Gd(S) to denote the
pointwise stabilizer of Xd(S) in G ≤ Aut(X).

Theorem 5.2. Let G ≤ Aut(X) act vertex-transitively on the connected graph X which
is not a cycle. Assume that the stabilizer Gv of each vertex v acts as a primitive group
on the set of neighbors of v. Then there exists a prime p such that G1(e) is a p-group
(possibly the identity) for every edge e of X.

R. M. Weiss eliminated the condition of vertex-transitivity and proved that under this
weaker assumption (which is implied by local 2-arc-transitivity) G2(v) is a p-group for
some vertex v [Wei79].

No analog of Weiss’s s ≤ 7 bound is known for locally s-arc-transitive graphs of ar-
bitrary degree. The significance of such an extension would be in its wider applicability
which would include incidence graphs of geometries of high symmetry. Such an application
of the following partial result of R. M. Weiss will be indicated in Theorem 5.5. We should
stress that Weiss’s proof is elementary.

Theorem 5.3. Let G ≤ Aut(X) be a locally s-arc-transitive group acting on the con-
nected graph X of girth g. Assume s ≥ 8 and g ≤ 2s+ 11. Then G5(S) = 1 for every arc
S of length 14.

5.2 Distance-transitive graphs

This is one of the deepest and most extensively studied areas. We refer to Biggs [Big74] for
an introduction and to the recent monographs by Brouwer, Cohen, Neumaier [BCN89] and
Bannai, Ito [BI84] for technical discussions. The techniques are partly combinatorial and
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algebraic (adjacency algebras) and apply in greater generality to distance regular graphs
(cf. Chap. 15, Sec. 4); partly group theoretic (both elementary and CFSG-dependent).

First we mention that the infinite distance-transitive graphs of finite degree have very
simple structure. For r, s ≥ 2, an r-tree of s-cliques is an infinite connected graph all
of whose 2-connected blocks are s-cliques and each vertex belongs to exactly r of these
cliques.

Theorem 5.4. (Macpherson [Mac82]) Every infinite distance-transitive graph of fi-
nite degree is an r-tree of s-cliques for some r, s ≥ 2.

Macpherson’s proof is based on Dunwoody’s theorem on cuts of graphs with more
than one end (Theorem 3.37). (Cf. Ivanov’s theorem below.) In constrast, a great
variety of infinite distance-transitive graphs of infinite degree follows by Fräıssé’s theorem
(Theorem 5.8) (Cameron, cf. [BCN89, p.233]). Henceforth in this section we assume that
our graphs are finite. (Exception: Theorem 5.6.)

Recently, a project aiming at the complete classification of all distance-transitive graphs
was drawn up (see the survey by Praeger [Pra90]). There are two phases to this project:
to classify vertex-primitive distance-transitive graphs; and to reduce the general case to
these. The program of the first phase was layed out by Praeger, Saxl, Yokoyama [PSY87]
who reduced the problem to cases when the automorphism group is either almost simple
or affine (has an elementary abelian normal subgroup). As a result of combined efforts
of Ivanov, van Bon, Cohen, Inglis, Liebeck, Praeger, Saxl and others, most of the result-
ing cases have been settled and this phase now approaches completion (cf. [Pra90] for
references).

The second phase has not advanced nearly as far but its basic idea is classical.
A graph X of finite diameter d is antipodal if being at distance d is an equivalence

relation among the vertices of X. Antipodal graphs X of diameter d ≥ 2 are not vertex-
primitive since X(d) is disconnected. (In X(k), two points are adjacent if they are at
distance k in X.)

The study of distance transitive graphs can, in a sense, be reduced to the vertex-
primitive case, by a result of D. H. Smith and N. J. Martinov which asserts that a distance-
transitive graph of degree ≥ 3 is either primitive, or bipartite, or antipodal. (Cf. [BCN89,
Ch. 4.2].) It follows that starting from a distance-transitive graph, two simple operations
will eventually lead to a vertex-primitive one. If X is antipodal, we identify antipodes
and obtain a distance-transitive graph covered by X. If X is bipartite then X(2) has two
isomorphic components, both are distance-transitive (X is a bipartite doubling of these
components). Bipartite doublings have been studied in a number of recent papers (see
e.g. Hemmeter and Woldar [HW90]). Gardiner’s 1974 paper [Gar74] initiated the study
of antipodal covers. He showed in particular that the size of the antipodal equivalence
class is not greater than the degree. Antipodal coverings of some classes were classified
recently (see Liebler [Lie91], van Bon and Brouwer [BB87]).

One of the most remarkable general results in this area, predating the classification
project indicated, is a classification of distance-transitive graphs by their degree. In 1974,
Biggs and Smith [BS71] determined all distance-transitive trivalent distance-transitive
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graphs (there are 12 of them). D. H. Smith went on to determining all tetravalent distance-
transitive graphs [Smi74]. Mostly by work of A. A. Ivanov, A. V. Ivanov, and I. Faradjev
[FII86, II88], all distance-transitive graphs of valency ≤ 13 are now known.

Theorem 5.5. ([CPSS83], [Cam82]) There are finitely many distance-transitive graphs
of any given degree d ≥ 3.

For the primitive case, this is immediate from Sims’s conjecture (Theorem 1.1, de-
pending on CFSG). Cameron [Cam82] points out that the general case rapidly follows,
observing that from a distance-transitive graph of degree k ≥ 3 the two operations men-
tioned above (halving, antipodal quotients) lead to a primitive distance-transitive graph
of valency 3 ≤ k′ ≤ k(k − 1) in at most two steps.

Remarkably, R. M. Weiss [Wei85b] found a proof of Theorem 5.5 avoiding the CFSG
reference, based on one of his result on s-arc-transitive graphs (Theorem 5.3), combined
with the following powerful elementary result of A. A. Ivanov.

A graph X = (V,E) is distance-regular if parameters ai, bi, ci exist such that for each
vertex v ∈ V , every vertex at distance i from v has ci, ai, and bi neighbors at distance
i− 1, i, and i+1 from v, resp. Distance-transitive graphs are clearly distance-regular. We
consider the parameter t = sup {i : (ai, bi, ci) = (a1, b1, c1)}. (It is clear that g ≤ 2t + 3
where g is the girth. If g ≥ 4 then (a1, b1, c1) = (0, k − 1, 1) and 2t+ 2 ≤ g ≤ 2t+ 3.)

Theorem 5.6. (Ivanov [Iva83]) If a distance-regular graph has degree k then its di-
ameter is d ≤ t · 4k.

This result is valid for infinite graphs as well, implying that in that case t = ∞, hence
the graph is an r-tree of s-cliques for some r, s ≥ 2, thus extending Macpherson’s theorem
to distance-regular graphs.

Returning to finite graphs, it is shown in [BCN89, p. 220] via Weiss’s proof, that the
diameter of a distance-transitive graph of degree k is d ≤ (k6)!4k. In reality, d ≤ 8 for
k = 3, and d ≤ 2k − 1 in all known cases for k ≥ 4.

We mention two more parameter bounds. Godsil [God88] proves that if a distance-
regular graph X has an eigenvalue of multiplicity f ≥ 3 then either X is complete multi-
partite or X has diameter d ≤ 3f −4 and degree k ≤ (f −1)(f +2)/2. The dodecahedron
attains the diameter bound; the icosahedron attains the valency bound.

Using CFSG through the list of doubly transitive groups, Weiss [Wei85a] classifies the
s-arc-transitive graphs of girth g ≤ 2s + 2 (s ≥ 4). (Note that g ≥ 2s − 2 always; and
g ≤ 2s + 2 holds for all distance-transitive graphs.) As a corollary, he finds all distance-
transitive graphs of degree k ≥ 3 and girth g ≥ 9. In addition to the two largest trivalent
distance-transitive graphs (the Biggs–Smith graph on 102 vertices (g = 9) and the Foster
graph on 90 vertices (g = 10), he finds an infinite sequence of graphs with g = 12,
the incidence graphs of the generalized hexagons of associated with the Chevalley groups
G2(q), q a power of 3.
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5.3 Homogeneity

In this section we consider a very strong symmetry constraint, the study of which has led to
powerful applications of group theory to model theory. A deeper survey is Lachlan [Lac86];
[KLM89] is accessible to the reader less versed in model theory.

We shall consider finite and countably infinite graphs, digraphs, and other structures.
A graph X is homogeneous if every isomorphism between finite induced subgraphs

extends to an automorphism of X. Homogeneous digraphs, hypergraphs, etc. are defined
analogously. Clearly, the complement of a homogeneous graph is again homogeneous.

Gardiner [Gar76] showed that the only finite homogeneous graphs are m · Kn (the
disjoint union of cliques of equal size), their complements, L(K3,3), and the pentagon. The

finite homogeneous tournaments are just the single point and ~C3 (the directed 3-cycle)
(Woodrow [Woo79]). The list of finite homogeneous oriented graphs (digraphs with no

2-cycles) is the following: the single point, ~C3, ~C3[Km] (lexicographic product, Sec. 2),

m · ~C3 (m copies of ~C3), ~C4, and finally the Cayley digraph of the quaternion group Q8

with respect to the generating set {i, j, k} in the usual notation (Lachlan).
Cameron [Cam80a] (cf. [CGS78]) and Gol’fand (unpublished) strengthened Gardiner’s

result considerably by relaxing the homogeneity condition. We call the graph X k-
homogeneous if isomorphisms of subgraphs of ≤ k vertices extend to automorphisms.

Theorem 5.7. (Cameron, Gol’fand) If X is a 5-homogeneous finite graph then X
appears on Gardiner’s list; and therefore X is homogeneous.

Actually, the result of Cameron and Gol’fand is even more general in that they replace
the symmetry condition by a regularity condition: X is k-regular if any two isomorphic
induced subgraphs of ≤ k vertices have the same number of common neighbors. Observe
that “1-regularity” means X is regular; and “2-regularity” means X is strongly regular.
These conditions do not imply the presense of any automorphisms and allow a great variety
of examples. This fact is in a remarkable contrast with the situation for k ≥ 5: If the
finite graph X is 5-regular then it appears on Gardiner’s list (Cameron, Gol’fand).

The following generalization allows us to bring graphs of diameter greater than 2 into
the picture. Let us call a graph X metrically k-transitive if any distance preserving map
between ordered k-tuples of vertices of X extends to an automorphism of X. Note that
for k = 1 this is vertex-transitivity, and for k = 2 it is distance-transitivity. We also
note that the neighborhood of a vertex in a metrically k-transitive graph is (k − 1)-
homogeneous. Building on this fact and on Theorem 5.7, Cameron classifies all finite
metrically 6-transitive graphs. The connected ones are the complement of m · Kn, Kn,n

with a perfect matching deleted, the cycles, L(K3,3), the icosahedron, and the graph J(6, 3)
on 20 vertices identified with the set of 3-subsets of a 6-set; two vertices are adjacent if the
corresponding 3-sets share two elements. It follows that these graphs are automatically
metrically k-transitive for every k.

Now we turn to the countably infinite (countable for short) case. The best known
example is the Rado graph, or “generic countable graph”, characterized by the following
property: given any two disjoint finite subsets A and B of the vertex set, there exists a
vertex adjacent to all vertices in A but none in B. This property determines a unique
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countable graph. The Rado graph contains all finite graphs as induced subgraphs. A
countable random graph (each pair is adjacent with probability 1/2 independently) has
probability 1 to be isomorphic to the Rado graph (Erdős–Rényi [ER63]).

In addition, for every m there exists a unique “generic countable graph without Km

subgraphs”, Gm. In this classification, the Rado graph is G∞. Lachlan and Woodrow
[LW80] show that the Gm (3 ≤ m ≤ ∞) and their complements exhaust all nontrivial
examples of countable homogeneous graphs; the trivial ones are disjoint unions of cliques
of equal size and their complements.

The Rado graph has an obvious tournament analogue, the “generic tournament”. Lach-
lan showed that there are only two other countable homogeneous tournaments: the dense
linear order (the order-type of the rationals), and the dense circular order. The latter is
defined by a countable dense set on the unit circle with no pairs of antipodal points; edges
correspond to clockwise walks along the shorter of the two arcs joining a pair of points.

Homogeneous partial orders were classified by J. Schmerl [Sch79]; a countable number
of them was found. In contrast to these results, Henson [Hen72] found continuum many
nonisomorphic countable homogeneous oriented graphs. Notwithstanding, Cherlin [Che87]
classified all the homogeneous oriented graphs.

Model theorist’s interest in homogeneous structures dates back to a 1954 paper of
Fräıssé [Fra54] linking homogeneity, categoricity, and quantifier elimination.

Let us consider a locally finite “language”, i.e. a set L of relation symbols, each
associated with a positive integer called the arity such that each arity occurs a finite
number of times. An L-structure M is a set M endowed with a relation of appropriate
arity for each symbol in L. (A k-ary relation is a subset of Mk. We allow the case
M = ∅.) Graphs, digraphs correspond to the language of a single binary relation. Every
subset of M induces a substructure. (We use the term “substructure” to mean induced
substructure.) M is homogeneous if all isomorphisms of finite substructures extend to
automorphisms of M. The theory Th(M) consists of all first order sentences which are
true in M. The theories of homogeneous L-structures are precisely those which permit
quantifier elimination (first order statements of the form ϕ(u1, . . . , uk) depend only on the
substructure induced by u1, . . . , uk).

Let F(M) be the class of structures isomorphic to finite substructures of M. A
class C of L-structures is hereditary if it is closed under taking substructures. C has the
amalgamation property if, whenever F0,F1,F2 ∈ C and gi : F0 → Fi are embeddings
(isomorphisms onto substructures) (i = 1, 2), there exist F3 ∈ C and embeddings fi :
Fi → F3 (i = 1, 2) such that g1f1 = g2f2. (Note especially that we allowed the case
F0 = ∅, thus taking care of what logicians call the “joint embedding property”.) An
isomorphism-closed class C of finite L-structures is called an amalgamation class if it is
hereditary and has the amalgamation property.

Theorem 5.8. (Fräıssé) If M is a countable homogeneous L-structure, then F(M)
is an amalgamation class. Conversely, every amalgamation class of finite L-structures is
F(M) for a countable homogeneous L-structure M, unique up to isomorphism.

The construction of M in the second statement is a direct limit argument. Since the
class of finite graphs without Km is clearly an amalgamation class, the generic graphs Gm

of the Lachlan–Woodrow theorem are uniquely determined.
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A countable structure M is ℵ0-categorical if (up to isomorphism) is the only count-
able model of its theory. Every countable homogeneous structure is ℵ0-categorical. (The
converse is false.) ℵ0-categoricity depends solely on AutM. The k-types of a structure M
are the orbits of Aut(M) on Mk.

Theorem 5.9. (Ryll-Nardzewski, Engeler, Svenonius) A countable structure M
is ℵ0-categorical if and only if it has a finite number of k-types for every finite k.

This result, in a sense, reduces the study of ℵ0-categorical structures to the study of
oligomorphic permutation groups (groups which have a finite number of orbits on k-sets for
every k; see Chap. 12, Sec. 9.5, cf. [Cam90]). Oligomorphic groups are precisely the dense
subgroups (w. r. to pointwise convergence) in the automorphism groups of ℵ0-categorical
structures over locally finite languages.

N is a smooth substructure of M if N is a substructure if (i) all automorphisms of N
extend to M; and (ii) for each k, two k-tuples u, v ∈ Nk belong to the same k-type of N
if and only if they belong to the same k-type of M.

An ℵ0-categorical L-structure is smoothly approximable if it is the union of a chain of
finite smooth substructures. The “trivial examples” in the Lachlan–Woodrow theorem, i.e.
the disjoint unions of complete graphs and their complements, are smoothly approximable.
By Theorem 5.9, the approximating finite structures must have a bounded number of k-
types for every fixed k.

In one of the most exciting developments in model theory recently, combined work
of Cherlin, Lachlan, Harrington, Kantor, Liebeck, Macpherson, and Hrushovski [CL86,
CHL85, KLM89, CH], heavily relying on CFSG, has led to the classification of all fi-
nite L-structures with a bounded number of 5-types. (The same magic number 5 as in
Theorem 5.7.)

Let C(L, k) denote the class of L-structures with at most k 5-types. The final result
is that C(L, k) can be decomposed into finitely many classes and each class has a sim-
ple dimension theory: a finite number of dimensions is identified, and each first order
statement is equivalent to a Boolean combination of finiteness and exact value statements
of each dimension. The dimensions can be varied essentially independently. Dimensions
correspond to classes of Lie geometries; the classical examples of the latter are linear and
projective spaces over finite fields, possibly with forms (symplectic, orthogonal, unitary),
and Grassmannians over disjoint unions of these. Pure sets occur as degenerate examples.
The ℓth Grassmannian over the geometry G is the orbit of an ℓ-dimensional subgeometry
of G under Aut(G). (When G is the disjoint union of t pure sets each of size m, the ℓth

Grassmannian is the association scheme defined by the natural action of Sm ≀ St on a set
of size n =

(
m
ℓ

)t
.)

The proof uses full force of CFSG through the structure theory of primitive permutation
groups (O’Nan–Scott Theorem, cf. Chap. 12), including recent work of Aschbacher and
Liebeck on maximal subgroups of classical groups.

A corollary of this theory is that for every finite language L and every k, membership
in C(L, k) can be tested in polynomial time.

Another curious corollary is the following. Let us say that the graph X has the m-
extension property if for any two disjoint subsets A,B of the vertex set there exists a vertex
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adjacent to all vertices in A but none in B, assuming |A|+ |B| ≤ m. (The Rado graph has
this property for all m. Almost all graphs on n vertices have the m-extension property for
m = (1 − ǫ) log2 n; and the Paley graph P (q, 2) (Sec. 1.1) for m = (1/2 − ǫ) log2 q [Bol85,
Ch. 13.2].)

Corollary 5.10. ([CH]) If for every m, Xm is a finite graph with the m-extension
property then the number of orbits of Aut(Xm) on 5-tuples of vertices is unbounded (as
m→ ∞).

It would be desirable to see a proof of this result which does not require CFSG.
A final note on higher cardinals: Kierstead and Nyikos [KN89] characterize those n-

uniform hypergraphs of cardinality κ which have a finite number of isomorphism types of
induced subhypergraphs of cardinality λ for some infinite λ < κ.

6 Graph isomorphism

Deciding whether or not two explicitly given finite algebraic or combinatorial structures
are isomorphic is a long-standing unsolved question in the theory of computing. Since
all such structures can be canonically encoded by polynomial-time computable graphs
([HP66], [Mil79]), it would suffice to solve it for graphs.

From a practical point of view, backtrack algorithms perform quite well. The leader
in the trade is B. McKay’s program “Nauty” [McK87]. However, in spite of considerable
effort, the theoretical complexity status of graph isomorphism is still unresolved.

6.1 Complexity theoretic remarks

For basic concepts of computational complexity theory we refer to Chapter 29; see also
[GJ79].

While “graph isomorphism” (the set of pairs of isomorphic graphs) clearly belongs to
NP, it is not known to belong to coNP. In other words, it is not known whether or not for
all pairs of nonisomorphic graphs, a short (polynomial length) proof of nonisomorphism
exists. It is known, however, that nonisomorphism has bounded round interactive proofs
[GMW86], a fact that puts “nonisomorphism” in the class AM, a randomized extension
of NP. This is considered strong theoretical evidence against NP-completeness of “graph
isomorphism”; if it were NP -complete, the “polynomial time hierarchy”, a hierarchy of
complexity classes between P and PSPACE, would collapse. For further references, see
[BM88] (cf. Chapter 29).

6.2 Algorithmic results: summary of worst case bounds

The best current worst-case bound for a general graph isomorphism algorithm is exp
√
cn logn

for n-vertex graphs (Luks and Zemlyachenko, cf. [BL83]). For some special classes of
graphs, substantially better results are available. For groups given by their multiplication
tables, and for Steiner triple systems, nO(log n) isomorphism tests easily follow from the
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observation that these structures have generating sets of size ≤ log n. For planar graphs,
ingenious use of stacks has resulted in a linear time isomorphism test (Hopcroft, Tarjan,
Wong [HT72], [HW74]). Combinatorial methods in similar spirit yielded polynomial time
isomorphism tests for graphs of bounded genus (nO(g) time for genus g ≥ 1) [FM80].
Group theoretic methods led to polynomial time algorithms for graphs with colored ver-
tices and bounded color-classes (isomorphisms preserve colors by definition) [Bab79c], for
graphs with bounded multiplicity of eigenvalues [BGM82], and, with considerably deeper
use of group theory, for graphs of bounded degree (Luks [Luk82]) (nO(d) time for graphs
of degree ≤ d [BL83]; O(n3 logn) time for trivalent graphs [GHL+87]). As a consequence
of Luks’s methods, isomorphism of block designs (BIBD’s) with bounded k and λ can be
tested in time nO(log n) [BL83] (k is the block size and there are λ blocks common to each
pair of vertices); isomorphism of tournaments can be tested in time nO(log n) [BL83]; and
isomorphism of λ-planes (symmetric designs) with bounded λ in nO(log log n) time [BL83].
A common generalization of the polynomial time results for bounded degree and bounded
genus was obtained by Miller [Mil83b], [Mil83a].

Luks’s beautiful paper [Luk82] is the single most fundamental reading in the area. It
introduces the profound links to group theory to be discussed in Section 6.6

6.3 Canonical forms

An algorithmic problem closely related to graph isomorphism is the problem of complete
invariants and in particular of canonical forms of graphs. Let K denote a class of objects
with an equivalence relation to be called “isomorphism”. An invariant on K is a mapping
f from K to some class L of objects such that whenever X, Y ∈ K are isomorphic, f(X) =
f(Y ). We call f a complete invariant, if the converse also holds: f(X) = f(Y ) implies
X ∼= Y . If, in addition, L = K and f(X) ∼= X for every X ∈ K then the complete invariant
f is called a canonical form over K; and f(X) the canonical form of X. For graphs,
a canonical form f assigns a labeling to the vertices, and this assignment is uniquely
defined by f up to automorphisms of X. We call such a labeling canonical, although
strictly speaking it is the coset of the automorphism group consisting of all the labelings
corresponding to f which is canonical.

Clearly, if a canonical form for a class of objects is available, then isomorphism testing
is accomplished by simply comparing the canonical forms. The converse is not known to
be true, but in all classes listed above, canonical forms can be obtained within the same
time bound as guaranteed for isomorphism testing (cf. [BL83]).

An important invariant of graphs is the characteristic polynomial of their adjacency
matrix. This invariant fails to be complete (quite badly, cf. Cor. 1.14), as do all other
known polynomial time computable invariants.

An example of a canonical form of a graph is the one which produces the lexicograph-
ically first adjacency matrix. While this is clearly a complete invariant, unfortunately it
is NP -hard to compute (reduction from maximum clique).
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6.4 Combinatorial heuristics: success and failure

Testing graph isomorphism is easily seen to be equivalent to determining the orbits of the
automorphism group of a graph. It is therefore natural to try to find invariant colorings of
the vertex set V (X) (i.e. each color class should be a union of orbits of Aut(X)), and refine
the color partition in the hope that eventually we obtain the orbit partition. An ordered
partition (C1, . . . , Cm) of V (X) into invariant color classes Ci can be refined in a simple
way: with each vertex v ∈ Ci, we associate the list (i, β1, . . . , βm), where βj denotes the
number of neighbors of v in Cj. Now order these lists lexicographically; vertices with the
same list receive the same color in the new coloring. (The first round colors the vertices
by their degree.) Eventually the process stops at a stable coloring, characterized by the
fact that for every i, j all vertices in Ci have the same number of neighbors in Cj.

Let T denote the class of graphs which are partitioned by this process into singletons.
Clearly, these graph have no automorphisms other than the identity, and the refinement
process results in a unique canonical labeling of the graphs belonging to T .

This naive method is highly successful on average: all but an exponentially small
fraction of the graphs on n vertices are partitioned into singletons in the third round (and
thus in linear time) [BK79]. This is a constructive version of the Erdős-Rényi theorem
that all but an exponentially small fraction of the graphs are asymmetric (Sec. 1.6).

Perhaps even more surprising is the result of Kučera [Kuč87] that a modified procedure
yields a unique canonical labeling of almost all trivalent graphs (and of graphs of bounded
degree) in linear time. One of the difficulties in handling regular graphs in linear time is
how to achieve an initial coloring at all. Kučera achieves this by considering the shortest
cycles.

If we allow more time, a simpler way would be to individualize a vertex, i.e. to assign a
unique color to it, thereby creating a nontrivial initial coloring. Even if subsequent refine-
ments lead to complete partitioning into singletons, we still have to repeat the procedure
for every vertex, thereby losing a factor of n in time. One can also individualize a set of k
vertices at once (giving each of them distinct colors), thereby increasing the running time
by a factor of nk.

This combination is shown in [Bab80b] and [Bab81c] to succeed for strongly regular
graphs as well as for primitive coherent configurations with k < 4

√
n logn (see Chap. 41,

Sec. 4).
A stronger refinement procedure was proposed in 1968 by Weisfeiler and Leman [Wei76a]:

they suggested to color the set of ordered pairs of vertices. Given an ordered partition
V × V = C1 × · · ·×Cm, into color classes Ci, we associate with each pair (u, v) of vertices
the list (i, βjk : 1 ≤ j, k ≤ m), where (u, v) ∈ Ci and βjk counts those vertices w with
(u, w) ∈ Cj and (w, v) ∈ Ck. Now again order these lists lexicographically to obtain a
refined coloring of V × V . The initial coloring of V × V uses 3 colors: edges, non-edges,
and the diagonal.

The class of graphs for which no refinement is obtained is the strongly regular graphs. In
general, the stable partitions for the Weisfeiler-Leman procedure are precisely the coherent
configurations (Chap. 15, Sec. 3).

One can generalize the Weisfeiler-Leman procedure to partitioning the set V d of ordered
d-tuples in an analogous way. The stable configuration obtained is canonical and the
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question is, for what d is the resulting partition of the diagonal necessarily the orbit
partition of the vertex set. Such a d would yield a canonical form computable in O(nd+1)
time.

The Cameron-Gol’fand theorem (Thm. 5.7) implies that for d ≥ 5, at least one non-
trivial partition occurs in all cases except for the unions of complete graphs of equal
size and the complements thereof. The result of [Bab80b] mentioned above implies that
d = O(

√
n log n) completely succeeds for strongly regular graphs.

Yet a surprising negative result of Cai, Fürer, Immermann [CFI92] dashed the hopes
for a purely combinatorial isomorphism test in moderately exponential (exp(n1−c)) time.
They construct a pair of nonisomorphic graphs which force d = Ω(n) in order for the
Weisfeiler-Leman procedure for d-tuples to distinguish them.

Their counterexample still leaves ample room for a combination of combinatorial and
group theoretic methods to work. Their graphs are partitioned into vertex classes of size 4,
and, as mentioned before, the simplest group theoretic method, based on [Bab79c], yields
canonical forms for graphs with bounded color classes in polynomial time.

We should mention that the current best timing for isomorphism testing and canonical
forms for general graphs, exp(O(

√
n logn)), is obtained by combining Luks’s group the-

oretic method with a combinatorial trick of Zemlyachenko [ZKT85] (cf. [Bab81a]). Since
Zemlyachenko’s method does not apply for instance to 3-uniform hypergraphs, the best
bound for isomorphism testing within this class is Cn (Luks, cf. [BL83]).

6.5 Reductions, isomorphism complete problems, Luks equiva-

lence class

The graph isomorphism problem (ISO for short) is polynomial time equivalent to the
isomorphism problem for directed, vertex and edge-colored graphs (isomorphisms preserve
colors by definition), and more generally to explicit structures with a set of relations of
arbitrary arities. This can be proven by the method of encoding colors into gadgets as
in Frucht’s theorem, cf. [HP66], [Mil79]. A number of restricted classes C are known
to be isomorphism complete, i.e. ISO can be reduced to isomorphism within C. These
include commutative semigroups, k-connected regular bipartite graphs with or without
Hamilton cycles, graphs with large girth and chromatic number, etc. Exceptions are those
classes which are known to have subexponential (exp(no(1))) isomorphism tests (groups,
Latin squares, tournaments, polynomial time testable classes), as well as strongly regular
graphs.

The following problems are also known to be equivalent to ISO (see Mathon [Mat79]).
Given a graph, determine (i) the orbits of Aut(X); (ii) generators of Aut(X); (iii) (Babai-
Mathon) the order of Aut(X).

Observe that (ii), if applied to the union of a pair of isomorphic connected graphs,
yields an isomorphism.

E. M. Luks found another, related equivalence class of group theoretic problems. Let
G,H ≤ Sym(Ω) be permutation groups given by a list of generators. The following prob-
lems are polynomial time equivalent: (a) find (generators for) G∩H (group intersection);
(b) given an element σ ∈ Sym(Ω), decide whether or not G ∩ Hσ = ∅ (coset intersec-
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tion); (c) given a subset A ⊂ Ω, find the set-stabilizer of A in G; (d) given A ⊂ Ω and
σ ∈ Sym(Ω), decide whether the set-stabilizer of A intersects the coset Gσ; (e) given
σ, τ ∈ Sym(Ω), decide whether or not σ belongs to the double coset GτH ; (f) given τ ∈ G,
find the centralizer of τ in G; (g) given σ, τ ∈ G, decide whether or not the centralizer of
τ in Sym(Ω) intersects Gσ.

(Note that if “set-stabilizer” is replaced by “pointwise set stabilizer” in problems (c)
and (d), they become polynomial time solvable.)

Proposition 6.1. (Luks) ISO reduces to coset intersection in polynomial time.

For simplicity we prove instead, how to reduce the determination of Aut(X) to group
intersection. Let X = (V,E) be a graph and let Ω be the set of unordered pairs from V .
Let G ≤ Sym(Ω) denote the induced action of Sym(V ) on pairs; and let H = Sym(E) ×
Sym(Ω \E) ≤ Sym(Ω) be the set stabilizer of E in Sym(Ω). Then obviously, the induced
action of Aut(X) on Ω is G ∩H . 2

It is significant that there is strong theoretical evidence suggesting that the decision
problems in the Luks equivalence class ((b), (d), (e), (g)) are not NP-complete ([GMW86],
[BM88]). If any of these problems (and therefore each of them) were NP-complete, this
would imply the collapse of the “polynomial time hierarchy” in complexity theory, just as
NP-completeness of ISO would (cf. Sec. 6.1).

Even more significantly, subcases of ISO can be reduced to polynomial time solvable
subcases of coset intersection, and thereby they become polynomial time solvable them-
selves. This is one of the fundamental observations in Luks’s seminal paper [Luk82].

6.6 Groups with restricted composition factors

In this section, we sketch the proof of the main result of [Luk82].

Theorem 6.2. (Luks) Isomorphism of graphs of bounded degree can be tested in poly-
nomial time.

Recall that we used Γd to denote the class of groups with a chain of subgroups G =
G0 ≥ . . . ≥ Gm = 1 such that |Gi−1 : Gi| ≤ d. This is the class of groups which occurs as
edge-stabilizers in connected graphs of degree ≤ (d+ 1) (Theorem 4.4 (c)).

Using the trivial direction of this characterization, Luks reduced isomorphism of graphs
of degree ≤ (d + 1) to set stabilizers within a coset Gσ (G ≤ Sym(Ω), σ ∈ Sym(Ω)),
where G ∈ Γd and G is given by a list of generators. Next, he solved the latter problem
in polynomial time, inventing a permutation group version of the classical algorithmic
technique of “divide and conquer”. The idea is to solve the problem one orbit at a
time, reducing to a sub-coset in each round. For transitive G, we break G into blocks of
imprimitivity; let N be the stabilizer of a system of maximal blocks. Now G/N acts as
a primitive group on the blocks. Gσ is the union of |G/N | cosets of N , and we solve the
problem separately inside each coset. Formally, fix A ⊆ Ω, and for any G-invariant set
B ⊆ Ω let C(B,Gσ) = {π ∈ Gσ : (A ∩ B)π = A ∩ B}. This set is either empty or a coset
of a subgroup of G. The identity C(B1 ∪B2, Gσ) = C(B1, C(B2, Gσ)) is used to reduce to
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the transitive case. For H ≤ G we have G =
⋃

iHτi and thus C(B,Gσ) =
⋃ C(B,Hτiσ);

this can be used to reduce the imprimitive case (H = N).
The algorithm runs in polynomial time because of the following result. It is easy to

see that Γd can be characterized as the class of groups of which each composition factor
is a subgroup of the symmetric group Sd.

Theorem 6.3. (Babai, Cameron, Pálfy [BCP82]) Let G ≤ Sn be a primitive group
of degree n and assume G ∈ Γd. Then |G| ≤ ncd where c is an absolute constant. More
generally, if all alternating composition factors of G have bounded orders and all classical
groups among the composition factors of G have bounded dimensions then |G| ≤ nC for
some constant C depending only on the bounds in the condition.

Note that in particular, primitive solvable groups have order ≤ nc, where c = 3.24399...
(Pálfy [Pál82], Wolf [Wol82]).

Turning back to Luks’s algorithm, Theorem 6.3 guarantees that |G/N | is polynomially
bounded, allowing a recurrence in timing with polynomially bounded solution, completing
the proof of Theorem 6.2. (We note that Theorem 6.3 was not available to Luks at the
time; instead, in the difficult affine case, he used the second reduction step above with H
a Sylow p-subgroup which he showed had polynomially bounded index.) 2

Isomorphism of tournaments can be decided in nO(log n) time [BL83]. This algorithm
uses the Pálfy-Wolf bound on primitive solvable groups (above) (and the Feit–Thompson
theorem through the solvability of the automorphism groups of tournaments).

6.7 Basic permutation group algorithms

We assume in this section that a permutation group G ≤ Sym(Ω) is given by a set S of
s generators; |Ω| = n. Some of the basic algorithmic problems to solve are testing mem-
bership in G of a given σ ∈ Sym(Ω); determining the order of G; constructing the normal
closure of a subgroup (also given by a list of generators). Once these are solved, solvability
and nilpotence of G are easily decided. In his pioneering work in computational group
theory, C. C. Sims [Sim70], [Sim78], [Sim71] constructed algorithms for these problems
wich ran fast in practice and were later asymptotically analysed to run in polynomial time
in the worst case (see below).

Theory and practice diverge in the areas of more advanced problems, including deter-
mining the center, the composition factors, the Sylow subgroups. All these problems are
now solvable in polynomial time. The elegant construction of a composition chain and
the composition factors (Luks [Luk87]) uses the O’Nan–Scott Theorem (Chap. 12) and
requires CFSG (the Classification of Finite Simple Groups) through Schreier’s Hypothesis
(the outer automorphism group of a simple group is solvable). Beals has recently found
an elementary algorithm for composition factors [Bea93b]. Kantor’s construction of the
Sylow subgroups [Kan85b], [Kan85a] starts with finding a composition chain via [Luk87]
and rests on detailed knowledge of CFSG and a case-by-case study of the classical groups.
Luks’s algorithm to find the center is elementary [Luk87].

Many other important problems are not known to be solvable in polynomial time,
and in fact often they are at least as hard in general as graph isomorphism (centralizers,
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intersections, cf. Sec. 6.5). Particularly efficient backtrack procedures have recently been
found and implemented by J. Leon [Leo91], using partitioning heuristics (cf. Sec. 6.4).
Such procedures are often used even for problems solvable in polynomial time (e.g. finding
the center by repeated application of a backtrack routine for centralizers), showing a
discrepancy between theoretical and practical measures of efficiency.

For the rest of this section we return to the complexity analysis of the basic problems.
Given a chain G = G0 ≥ G1 ≥ . . . ≥ Gm = 1 of subgroups, a strong generating set (SGS)
with respect to this chain is a set T ⊆ G such that 〈T ∩ Gi〉 = Gi for every i. This
concept was introduced by C. C. Sims [Sim70] (with respect to the stabilizer chain) as the
fundamental data structure for permutation group algorithms. (Recent algorithms often
operate on different chains of subgroups; however, it is possible to switch efficiently from
any SGS to one in Sims’s sense [CFS90].) Given an SGS, the problems of membership and
order can be solved easily, a presentation (in terms of generators and relations) can be
deduced, and slight variations of the SGS methods yield normal closures as well. Variants
of Sims’s method have been shown to run in polynomial time (O(n6 + sn2) [FHL80] and
O(n5 +sn2) [Knu91], [Jer86]). These elementary algorithms require Ω(n5) even on average
on large classes of examples [Knu91].

Better asymptotic bounds have been obtained using heavy guns. For two function
f, g let us write f(n) = O∼(g(n)) if for sufficiently large n, f(n) ≤ g(n) logc n for some
constant c. With this notation, the best current deterministic asymptotic worst case
bound is O∼(sn3) [BLS93]. This bound depends on CFSG primarily through estimates of
the orders of primitive permutation groups (Chap. 12, Theorem 5.8, cf. [Cam81]). With
randomization we can do considerably better and have an entirely elementary O∼(n3 +sn)
Monte Carlo algorithm to construct an SGS [BCF+91]. (Being Monte Carlo, the algorithm
does not guarantee to construct an SGS but it does so with arbitrarily large probability.)
The algorithm includes a particularly efficient normal closure routine, running in O∼(n2 +
sn). The basic technique of the algorithm generalizes the following observation: Let
g1, . . . , gk ∈ G generate G and let H be a proper subgroup of G. Then the probability that
h 6∈ H for a random subproduct h = gǫ1

1 · · · gǫk

k is ≥ 1/2. (The ǫi ∈ {0, 1} are selected by
independent unbiased coin-flips.)

A base of G is a set B ⊆ Ω such that the pointwise stabilizer of B in G is the
identity. Let µ(G) be the minimum size of a base. The case of small µ(G) is of particular
interest. For instance, if G is simple non-alternating then µ(G) = O(logn). It is easy
to see that 2µ(G) ≤ |G| ≤ nµ(G). Let us say that a class G of groups has small bases if
µ(G) = (logn)O(1) for G ∈ G. Sims style algorithms run in O∼(sn2) on groups with a
small base. Using new combinatorial techniques, elementary Monte Carlo algorithms have
been found which construct an SGS in nearly linear, O∼(sn) time for small base groups
[BCFS91]. The speedup relies on methods capable of handling chains of certain subsets of
G which are not subgroups; the subgroup structure of small base groups tends to be too
coarse to allow nearly linear time. The key new ingredients are an efficient implementation
of Sims’s Schreier vector data structure to store coset representatives in a shallow tree
(depth guaranteed to be ≤ log |G|) via an algorithmic version of the Reachability Theorem
(Theorem 6.4); and the use of the Local Expansion property (Theorem 3.41) to rapidly
locate new elements if the current partial SGS misses a substantial portion of G.
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Finding domains of imprimitivity seems indispensable when delving deeper into the
group structure. Atkinson’s algorithm finds them in quadratic time [Atk75]. For small
base groups, Beals improved this to nearly linear time [Bea93a], and in a tour de force,
used this with Seress to find a composition series in nearly linear time [BS92b].

A final note on parallelization. An NC algorithm uses nO(1) parallel processors and
extremely short, (logn)O(1) time, where n is the length of the input. (So none of the
processors has time to read any substantial portion of the input; cf. Chap. 29.) Radical
departure from the classical methods has allowed the design of an NC algorithm to con-
struct an SGS and solve some of the basic problems in NC, including membership, order,
normal closures, solvability, center, composition factors [BLS87]. Again, the algorithm
uses CFSG mainly through Theorem 5.8 of Chap. 12, and also requires Luks’s composi-
tion factors algorithm. The algorithm digs deeply into the normal structure of G. Even
the rudimentary task of membership testing requires determining the composition series
first.

6.8 Complexity of related problems

Problems related to graph isomorphism (“ISO” for short) and permutation group member-
ship fall into a variety of complexity classes. Groups, semigroups will be given by a list of
generators, unless otherwise stated.

A surprising result of Anna Lubiw [Lub81] asserts that the following problem is NP -
complete: Does a given permutation group have a fixed-point-free element ? Even the
case when G is an elementary abelian 2-group is NP -complete. F. Lalonde [Lal81] used
this to show the following problem NP -complete: Does a given a bipartite graph have
an automorphism of order 2 interchanging the two color classes? In contrast, if we omit
the “order 2” restriction, the problem becomes isomorphism complete (equivalent to ISO).
The original (equivalent) statement of Lalonde’s theorem is this: The star system problem
is NP -complete. The “star system problem” has a family F of n subsets of an n-set V
for input and asks if there exists a graph X = (V,E) such that F = {X(v) : v ∈ V } is the
family of vertex neighborhoods in X.

Isomorphism of groups of order n, given by their Cayley tables, can be decided in time
nlog2 n+O(1) because the groups are generated by ≤ log2 n elements and any mapping of
the generators can be extended to a homomorphism in at most one way. This argument
generalizes to quasigroups which in turn include Steiner triple systems.

To decide isomorphism of permutation groups is at least as hard as hard as ISO [BKL].
On the other hand this problem is in NP for the following simple reason: Let G = 〈S〉 ≤
Sym(A) and H = 〈T 〉 ≤ Sym(B) be permutation groups and f : S → Sym(B) a map.
Then f extends to an isomorphism of G onto H if and only if the following two polynomial
time testable conditions hold: (i) H is generated by the f -image of S; (ii) the orders of
G, H , and the group 〈(s, f(s)) : s ∈ S〉 agree. – On the other hand, isomorphism of
permutation group also belongs to the class coAM [BKL] (cf. Sec. 6.1) and is therefore
unlikely to be NP -complete.

If G,H,K ≤ Sym(A) and σ ∈ Sym(A) then the double coset membership problem
“σ ∈ GH?” belongs to the Luks equivalence class (is equivalent to coset intersection)
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(Sec. 6.5). On the other hand, the question “σ ∈ GHK?” is NP -complete (Luks).
The membership problem for semigroups of transformations of a finite set is PSPACE-

complete (Kozen [Koz77]).
The membership problem for d × d integral matrices is undecidable already for d = 4.

This is immediate from the following result of Mihailova [Mih58]: The membership problem
is undecidable for subgroups of F2 × F2, where F2 is the free group of rank 2. However,
finiteness of an integral matrix group (or a matrix group over an algebraic number field)
can be decided in polynomial time [BBR93], and if the group is finite, the usual basic
questions (order, center, composition chain, Sylow subgroups) can be answered in Las
Vegas polynomial time [BB93]. (A Las Vegas algorithm uses randomization but never
outputs a wrong answer.)

For finite groups, the membership problem is in NP under quite general conditions.
A black box group is, informally, a group whose elements are encoded by (0,1)-strings of
uniform length, and the group operations are performed by a “black box”. (As all our
groups, a black box group is given by a list of generators.) Then membership is in NP ,
relative to the black box. In particular, membership in matrix groups over finite fields is
in NP . This is immediate from the following combinatorial result. A straight line program
reaching a group element g ∈ G from a set S of generators of G is a sequence g1, . . . , gm of
elements of G such that gm = g, and for each i, either gi ∈ S, or gi = g−1

j , or gi = gjgk for
some j, k < i. The cost of such a program is the number of inversions and multiplications
(the calls to S are free). The straight line cost of g ∈ G (relative to S) is the minimum
cost of straight line programs reaching g from S.

Theorem 6.4. (Reachability Theorem [BS84]) Given any set S of generators of a
group G of order n, the straight line cost of any g ∈ G is less than (1 + log2 n)2.

We conjecture that membership in matrix groups also belongs to coNP. The proof of
this statement and the stronger statement that the order of a matrix group over a finite
field belongs to NP (i.e. the correct order has polynomial time verifiable certificates)
depends, in essence, on the following conjecture.

Short presentation conjecture. Every group of order n has a presentation (in terms
of generators and relations) of length (log n)O(1).

(The length of a presentation is the total number of characters required to write down
the presentation.) It follows from Theorem 6.4 that it suffices to prove this conjecture
for simple groups. All cases have been confirmed with the exception of the rank 1 simple
groups of twisted Lie type (unitary, Suzuki, Ree) [BGK+].

None of the problems mentioned in this section, with the possible exception of isomor-
phism of groups given by a Cayley table, is expected to have polynomial time solution.
In particular, the membership problem for 1 × 1 matrix groups is a close relative of the
discrete logarithm problem (given a, b ∈ GF (q), find an integer x such that ax = b or
decide that no such x exists) which is not expected to be solvable in polynomial time
(cf. [AD93]).

Modulo this obstacle, however, a great deal of stucture can be found in matrix groups
and even in black box groups [BB93].
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7 The reconstruction problem

All graphs in this section are finite unless otherwise stated.
In the Introduction to this chapter we gave a general definition of reconstructibility;

and discuused a number of instances. Examples include Whitney’s theorems on the re-
constructibility of graphs from their line graphs (with known exceptions) (Sec. 1.2), of
3-connected graphs from their cycle matroids (cf. Chap. 11, Sec. 7), and from many other
functions of graphs (the area of graph equations comes under this heading, see [CS79]). The
unsettled status of the Graph Isomorphism problem is related to the non-reconstructibility
from any of the known polynomial time computable invariants.

While reconstruction problems (solved and unsolved) seem to pop up in nearly every
topic considered, the term “The Reconstruction Problem” has been reserved for the single
most notorious member of this species in graph theory: the Kelly–Ulam Reconstruction
Conjecture. It is this problem to which this brief last section is devoted. For more
information and references we refer to the surveys mentioned in the preface to this chapter.

7.1 Vertex reconstruction

With every a graph X = (V,E) we associate the multiset Dv(X) of isomorphism types of
its one-vertex-deleted subgraphs, i.e. the isomorphism type of X \ v for each v ∈ V . We
call Dv(X) the deck of 1-vertex-deleted subgraphs. Analogously one can define the multiset
De(X), the deck of 1-edge-deleted subgraphs, and more generally, Dv

k(X) and De
k(X), the

decks of k-vertex-deleted (k-edge-deleted, resp.) subgraphs.
The graph X is vertex reconstructible (or simply reconstructible) if it is determined (up

to isomorphism) by Dv(X). Edge-reconstructibility is defined analogously. More generally
we say that the graph invariant f(X) (cf. Section 6.3) is vertex-reconstructible if f(X) is
determined by Dv(X). The Reconstruction Conjecture says that all finite graphs with ≥ 3
vertices are reconstructible (P. J. Kelly, S. M. Ulam, 1942).

The answer to the analogous question for directed graphs is negative: an infinite family
of pairs of non-isomorphic tournaments with identical decks has been found by P. K.
Stockmeyer [Sto77].

It is known that almost every graph is vertex-reconstructible (Erdős). Indeed, this is an
immediate consequence of the fact that almost every graph X has the following property:
no pair of two-vertex-deleted subgraphs of X are isomorphic. – This argument generalizes
to smaller subgraphs: almost all graphs are reconstructible from their k-vertex-deleted
subgraphs for all k < c logn for some constant c > 0.

Some concrete classes of graphs are also known to be reconstructible. These include
disconnected graphs, trees (Kelly, 1957), and some families of tree-like graphs. In par-
ticular, all graphs with ≤ n edges are reconstructible. On the other hand, if m(n) is a
function such that m(n)−n is unbounded, then it is not known whether or not all graphs
with m(n) edges are reconstructible.

Among the reconstructible invariants, one should mention the degree sequence and a
refinement of this: the sequence of degree sequences of the neighborhoods of the vertices
[NW78]. Applying powerful counting techniques to reconstruction theory, Tutte [Tut79]
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has shown important polynomials associated with graphs to be reconstructible: the char-
acteristic polynomial, the chromatic polynomial, and generalizations of these.

The Reconstruction Conjecture is false for infinite graphs (even for forests) but no
counterexamples are known to the following variant, Halin’s Conjecture: If two (finite or
infinite) graphs with at least 3 vertices have the same deck of vertex-deleted subgraphs,
then each is isomorphic to a subgraph of the other.

7.2 Edge reconstruction

It is known that a vertex-reconstructible graph with at least 4 edges is also edge-reconstructible
(Greenwell [Gre71]). In addition, however, large classes of graphs are known to be edge-
reconstructible for which vertex-reconstructibility is open. The first result in this direction
was Lovász’s [Lov72b] who proved that if a graph has more edges than its complement
then it is edge-reconstructible. Lovász’s proof used a clever inclusion-exclusion argument
which was the basis of rapid further improvements. V. Müller [Mül77] showed that graphs
with m edges and n vertices are edge-reconstructible unless 2m−1 ≤ n!, which means
m ≤ n · log2 n. Nash-Williams [NW78] modified Müller’s proof and obtained the following
lemma, from which Müller’s bound is immediate.

Lemma 7.1. (Nash-Williams) Suppose that the graphX = (V,E) is not edge-reconstructible.
Then for every subset A ⊆ E such that |A \ E| is even, there exists a permutation
σ ∈ Sym(V ) such that E ∩ Eσ = A.

Lovász observed that this lemma has the following immediate consequence:

Corollary 7.2. If X = (V,E) is not edge-reconstructible then for every T ⊆ E,

|σ ∈ Sym(V ) : T σ ⊆ E| ≥ 2|E|−|T |−1.

L. Pyber [Pyb90] used this to derive that all Hamiltonian graphs are edge-reconstructible,
with possibly a finite set of exceptions. Indeed, by Cor. 7.2, a nonreconstructible Hamil-
tonian graph with n vertices and m edges would have at least 2m−n−2/n Hamilton cycles.
But this is too much: Pyber proves that no graph has more than cm−n Hamilton cycles,
where c = 1.977. 2

The arguments used in the proofs of Lovász, Müller, Nash-Williams lend themselves to
a much more general treatment. The following framework was introduced by V. Mnukhin
[Mnu87].

Let G ≤ Sym(Ω) be a permutation group acting on the set Ω. We say that two subsets
∆1, ∆2 ⊆ Ω are G-isomorphic if ∆σ

1 = ∆2 for some σ ∈ G. For any subset Γ ⊆ Ω let ΓG

be the G-orbit of Γ, i.e. the set of subsets of Ω, G-isomorphic to Γ.
For ∆ ⊆ Ω let the k-deleted deck Dk(∆) be the multiset of G-isomorphism classes of

the (|∆| − k)-element subsets of ∆. The set ∆ is k-reconstructible if it is determined (up
to G-isomorphism) by its k-deleted deck Dk(∆).

In particular, taking Ω to be the set of
(

n
2

)
pairs of elements of V and G ∼= Sym(V )

be the induced action of Sym(V ) on Ω, the concept of G-isomorphism of subsets of Ω
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becomes the ordinary isomorphism of graphs on the vertex set V ; and k-reconstructibility
turns into the concept of reconstructibility from the deck of k-edge-deleted subgraphs.

Generalizing Müller’s theorem Mnukhin proves that if ∆ ⊂ Ω is not 1-reconstructible
then 2|∆|−1 ≤ |G|.

Below we indicate a linear algebra approach introduced by Godsil, Krasikov, and
Roditty [GKR87] to extend Müller’s result to k-reconstructibility for k ≥ 2. Their tech-
nique is easily adapted to Mnukhin’s situation.

Recall that a hypergraph F ⊆ 2Ω is m-uniform if |E| = m for each E ∈ F .

Definition 7.3. The Vapnik–Chervonenkis dimension or VC dimension of a hypergraph
F ⊆ 2Ω is the greatest integer t for which there exists a subset A ⊆ Ω with |A| = t such
that every subset B ⊆ A occurs as B = A ∩ E for some E ∈ F .

For 0 ≤ s ≤ n the s-inclusion matrix I(F , s) of a hypergraph F ⊆ 2Ω has rows indexed
by the members F ∈ F , columns indexed by subsets A ⊆ Ω with |A| = s, and entry 1
if A ⊆ F and 0 otherwise. The s∗-inclusion matrix I∗(F , s) has all the columns of the
t-inclusion matrices for t = 0, 1, 2, . . . , s.

We say that F is s-independent if the rows of the s-inclusion matrix are linearly inde-
pendent (i.e. I(F , s) has full row-rank), and it is s∗-independent if the rows of I∗(F , s)
are linearly independent. Clearly s-independence implies s∗-independence, and for uniform
hypergraphs, the converse also holds [FW81].

Theorem 7.4. (Frankl–Pach [FP83]) If F is s∗-dependent, then its VC dimension is
at least s+ 1.

The proof follows from the proof of Cor. 4.2 in Chap. 31. For a theory of the inclusion
matrices, including this result, see [BF92].

The main lemma of [GKR87] follows.

Lemma 7.5. If ∆1 and ∆2 have the same k-deleted deck Dk(∆i) but are notG-isomorphic,
then the m-uniform set-system F = ∆G

1 ∪ ∆G
2 is (m− k)-dependent (where m = |∆i|).

Proof: We prove the dependence of the rows of I(F , m− k) by explicitly giving coef-
ficients c(E) (E ∈ F) for a linear relation among them. For i = 1, 2 let αi = |G{∆i}| (the
size of the set-stabilizer of ∆i). If E ∈ ∆G

1 let c(E) = α1, and if E ∈ ∆G
2 let c(E) = −α2.

To check that this linear combination of the rows is a zero row, consider a column indexed
by a set T ⊆ Ω with |T | = m − k. The column has zeros except where T ⊆ E. So the
entry for this column in the indicated linear combination of the rows will be α1 times the
number of E ∈ ∆G

1 with T ⊆ E, minus α2 times the number of E ∈ ∆G
2 with T ⊆ E. This

is the number of σ ∈ G for which T ⊆ ∆σ
1 minus the number of σ ∈ G for which T ⊆ ∆σ

2

But this difference is zero because for every set T of size m− k, the number of σ ∈ G for
which T σ ⊆ ∆i is independent of i. 2

Using this lemma and Theorem 7.4 we infer the following generalization of Müller’s
inequality.

Theorem 7.6. ([GKR87]) If ∆ ⊆ Ω is not k-reconstructible, then 2|∆|−k ≤ |G|.
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Proof: Combining the foregoing results we obtain that for F as before, the VC-dimension
of F is ≥ m− k + 1. Hence |F| ≥ 2m−k+1, while clearly |F| ≤ 2|G|. 2

In particular we obtain that if a graph with n vertices andm edges is not k-reconstructible
then 2m−k ≤ n!, or m ≤ k + n log2 n.

For k = 1 we also recover Lovász’s corollary to the Nash-Williams Lemma (slightly
improved).

Theorem 7.7. If ∆ ⊆ Ω is not 1-reconstructible, then for every Γ ⊆ ∆,

| {σ ∈ G : Γσ ⊆ ∆} | ≥ 2|∆|−|Γ| − 1.

Proof: Let F be as before (now k = 1). Since its VC dimension is ≥ m− k + 1 = m,
there is a set A ⊆ Ω with |A| = m of which every subset is its intersection with some
E ∈ F . In particular, A ∈ F . Now take any proper subset Γ of ∆. Since ∆ and ∆2 have
the same 1-deleted deck, we also have Γσ ⊆ ∆2 for some σ ∈ G, hence we have Γτ ⊆ A for
some τ ∈ G (since A ∈ F = ∆G ∪∆G

2 ). And | {σ ∈ G : Γσ ⊆ ∆} | = | {σ ∈ G : Γτ ⊆ ∆σ} |.
But this latter is at least the number of proper subsets of A which contain Γτ , because
each of those is A ∩ E for some E ∈ F (hence for some E = ∆σ since the proper subsets
are in the 1-deleted deck which ∆ and ∆2 share). The latter number is 2m−|Γ| − 1. 2
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[Ker21] B. v. Kerékjártó. Über die periodischen Transformationen der Kreisscheibe und

der Kugelfläche. Math. Ann., 80:36–38, 1921.
[Kes59] H. Kesten. Symmetric random walks on groups. Trans. A.M.S., 92:336–354,

1959.
[KL75] V.L. Kompel’macher and V.A. Liskovets. Sequential generation of permutations

by means of a basis of transpositions (in russian). Kibernetika, pages 17–21,
1975.

[Kli81] M.H. Klin. On edge but not vertex transitive graphs. In Algebraic Methods in
Graph Theory, pages 405–434. North-Holland, 1981. Colloq. Math. Soc. Bolyai,
Szeged, 1978.

[KLM89] W.M. Kantor, M.W. Liebeck, and H.D. Macpherson. ℵ0-categorical structures
smoothly approximable by finite substructures. Proc. LMS, 59:439–463, 1989.

[KMF91] M.H. Klin, M.E. Muzychuk, and L.A. Faradẑev. Cellular rings and groups of
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[Mad71b] W. Mader. Über den Zusammenhang symmetrischer Graphen. Arch. Math.,

22:333–336, 1971.
[Man71] P. Mani. Automorphismen von polyedrischen Graphen. Math. Ann., 192:297–

303, 1971.
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