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Abstract

We consider the asymptotic complexity of algorithms to manipulate
matrix groups over finite fields. Groups are given by a list of generators.
Some of the rudimentary tasks such as membership testing and com-
puting the order are not expected to admit polynomial-time solutions
due to number theoretic obstacles such as factoring integers and dis-
crete logarithm. While these and other “abelian obstacles” persist, we
demonstrate that the “nonabelian normal structure” of matrix groups
over finite fields can be mapped out in great detail by polynomial-time
randomized (Monte Carlo) algorithms.

The methods are based on statistical results on finite simple groups.
We indicate the elements of a project under way towards a more com-
plete “recognition” of such groups in polynomial time. In particular,
under a now plausible hypothesis, we are able to determine the names
of all nonabelian composition factors of a matrix group over a finite
field.

Our context is actually far more general than matrix groups: most
of the algorithms work for “black-box groups” under minimal assump-
tions. In a black-box group, the group elements are encoded by strings
of uniform length, and the group operations are performed by a “black
box.”

1 Introduction

1.1 Outline of objectives

Let G be a finite group given by a list of generators. Our aim is to design
asymptotically efficient algorithms to obtain structural information about
G.
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Typically G will be a matrix group over a finite field, but most of our
algorithms work in the more general context of “black-box groups.” In a
black-box group, a “black box” performs the group operations on codewords
representing the group elements. Each codeword has the same length n,
the encoding length. (See Section 3.1 for details). This generalization, in-
troduced in [BaSz], is critical to our work. Work in progress on statistical
recognition of simple black-box groups will amplify the significance of the
black-box approach (see Section 9). In particular, assuming success of that
project, we shall be able to determine the names of all nonabelian composi-
tion factors of matrix groups over finite fields.

Our goal is to explore the power of Monte Carlo (randomized) polynomial-
time algorithms. The rigorously proven performance guarantees accompany-
ing the algorithms will include a user-prescribed bound ε on the probability
of error and guaranteed polynomial time bounds. The complexity of such
an algorithm will always be of the form O(nc log(1/ε)) where n is the en-
coding length and c is a constant, so in polynomial time we can achieve an
exponentially small probability of error. (A more detailed upper bound on
the complexity may be available as a function of specific parameters of the
input.)

Unfortunately some of the rudimentary tasks such as membership test-
ing and determining the order of the group are not likely to be solvable in
polynomial time for matrix groups over finite fields, due to their close associ-
ation with hard problems in computational number theory such as factoring
integers and discrete logarithm.

In spite of this significant handicap, we show that a great deal of struc-
tural information about black-box groups can be obtained in polynomial
time. We emphasize, that, in contrast to previous work [Lu92, BeB], in this
paper we do not assume an “oracle” (black box) for discrete logarithms, and
our estimates do not involve quantities such as the largest prime divisor of
the order [Lu92] or the minimum degree of permutation representations of
composition factors [BeB]. Our algorithms are genuinely polynomial time
(in the length of the input). The only concession we make is that for the
most general black-box group results we assume that a superset of the primes
dividing |G| is available (preprocessing). However, for the most important
applications (matrix groups over finite fields and their quotients), we get rid
of this assumption and remain entirely within polynomial time.

In this paper we do not address questions of implementation. We believe,
that, as has been the case in the past, the mathematical insights forced by
the rigor of guaranteed polynomial time will lead, through further theoretical
work as well as through the use of heuristic shortcuts, to algorithms with
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the potential of practical implementation3.

1.2 Basic normal structure

We consider the following chain of characteristic subgroups of the finite
group G:

1 ≤ Sol(G) ≤ Soc∗(G) ≤ Pker(G) ≤ G. (1)

Here Sol(G) is the solvable radical of G (largest solvable normal subgroup).
We define Soc∗(G) by

Soc∗(G)/ Sol(G) = Soc(G/ Sol(G)) (2)

where Soc(H) is the socle of H (product of the minimal normal subgroups of
H). We say that a group H is semisimple if H is the product of nonabelian
simple groups. We refer to Soc∗(G)/ Sol(G) as the semisimple socle of G.
(Note that in general this is not the semisimple part of Soc(G).) Let

Soc∗(G)/ Sol(G) = T1 × · · · × Tk (3)

where the Ti are nonabelian simple groups. Let ϕ : G → Σk be the permuta-
tion representation of G via conjugation action on the set {T1, . . . , Tk}. (By
Σk we denote the symmetric group of degree k.) We define the permutation
kernel Pker(G) of G by

Pker(G) = ker(ϕ). (4)

We make the following observations regarding the quotients of the charac-
teristic chain (1).

(i) Sol(G) is solvable;
(ii) Soc∗(G)/ Sol(G) is semisimple (eqn. (3));
(iii) Pker(G)/ Soc∗(G) is solvable; in fact (Pker(G)/ Soc∗(G))′′′ = 1;
(iv) G/ Pker(G) ≤ Σk, and k ≤ log |G|/ log 60.

The reason for item (iii) is the observation that

Pker(G)/ Soc∗(G) ≤ Out(T1)× · · · ×Out(Tk). (5)

This implies that Pker(G)/ Soc∗(G) is solvable according to Schreier’s con-
jecture; in fact (Pker(G)/ Soc∗(G))′′′ = 1 (cf. [CoCNPW]). Item (iv) is
immediate from equation (3).

3A prime example is Luks’s polynomial time algorithm for constructing the composition
chain of a permutation group [Lu87]. A sequence of asymptotic improvements culminated
in a nearly linear time algorithm (still based on Luks’s basic outline) by Beals and Ser-
ess [BeS]. With appropriate heuristic shortcuts, Seress implemented the [BeS] algorithm
in GAP [Sch, Se].
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1.3 The main results

Let us now return to our basic object, a black-box group G of encoding length
n. To simplify the presentation, we assume that a superset P ⊇ π(G) is also
given, where π(G) denotes the set of primes dividing |G|. This assumption is
partly justified by requiring a preprocessing only, rather than the availability
of an “oracle” to solve problems like discrete logarithm on-line.

Nonetheless, we consider the assumption of prime factors to be an un-
pleasant one. In Section 8 we shall see how to dispense with this assumption
in the most important subcase of black-box groups of characteristic p. This
subcase includes the subgroups of GL(d, pk) and their quotients by recogniz-
able normal subgroups, assuming the group elements are encoded as d × d
matrices over GF (pk).

Terminology. To construct (or synonymously, to find) a subgroup H of
a black-box group G means to construct generators for H. To recognize H
means to test, for any g ∈ G, membership of g in H. The cost of constructing
H is the time or other cost measure (such as number of group operations)
required to construct a set of generators for H. The cost of recognizing H is
the maximum over g ∈ G of the cost of the decision whether or not g ∈ H.

Unfortunately, efficient construction is not known to imply efficient recog-
nition or vice versa. This is a major obstacle we have to face all along. We
note that for permutation groups, construction does imply recognition in
polynomial time (membership testing is available in polynomial time [Si78,
FuHL]), but even for permutation groups, recognition does not seem to
imply polynomial-time construction: the automorphism group of a graph
is recognizable in polynomial time (membership testing is straightforward),
yet we are unable to construct a set of generators in polynomial time. The
latter task is equivalent to the graph isomorphism problem, not known to be
solvable in polynomial time (cf. [Ba95, Section 6] for a survey of the graph
isomorphism problem).

In this paper we shall try to construct the members of the chain (1),
refine the chain to a composition chain, and identify the composition factors.
Ideally, we would also want to recognize these subgroups. Certain “abelian
obstacles” (Section 3.5) prevent us from completing this plan in polynomial
time, but we claim considerable degree of success in the “nonabelian part”
of the project.

By a quasi-composition chain of a group H we mean a subnormal chain
1 = Hm / Hm−1 / · · · / H0 = H such that all quotients Hi−1/Hi are abelian
or simple nonabelian. In the case of an abelian quotient we allow the case
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Hi−1 = Hi since we do not have membership testing. If we say that a quasi-
composition chain is known, we mean that generators of each Hi are known,
and furthermore we know which quotients are abelian and which are simple
nonabelian.

First we note that Sol(G) is recognizable in Monte Carlo polynomial time,
and therefore we can treat G/ Sol(G) as a black-box group (Corollary 3.3).
On the other hand, we are not able to construct Sol(G).

Theorem 1.1 Given a black-box group G along with a set P ⊇ π(G),
one can construct, in Monte Carlo polynomial time, the permutation ker-
nel Pker(G), the semisimple socle Soc∗(G)/ Sol(G), the decomposition (3)
of Soc∗(G)/ Sol(G) into a product of k simple groups, and the permutation
representation ϕ : G → Σk with kernel Pker(G). Consequently one can
construct, in Monte Carlo polynomial time, a quasi-composition chain of
G/ Sol(G) as well as a black-box representation of each nonabelian composi-
tion factor of G.

(The last statement includes exhibiting a correspondence between the non-
abelian composition factors of G and the corresponding members of the
quasi-composition chain of G/ Sol(G).)

We note that (iv) above implies k ≤ n/ log 60 < n/5; therefore once
ϕ has been computed, the extensive library of polynomial time algorithms
for permutation groups becomes available for G/ Pker(G) [BaLS, Lu93]. In
particular, we can construct a composition chain of G/ Pker(G) as well as
permutation representations of the composition factors; moreover we can
construct a presentation in terms of generators and relations.

“Constructing” ϕ would mean defining the ϕ-images of generators. How-
ever, we “construct” ϕ in a stronger sense: we set up a data structure which
allows ϕ(g) to be computed in polynomial time, for arbitrary g ∈ G. We
do not assume here that we know how to construct g from the generators
of G. This makes Pker(G) recognizable within G: given g ∈ G, we have
g ∈ Pker(G) exactly if ϕ(g) = 1, and the latter is decidable in polynomial
time.

We are, however, unable to recognize Soc∗(G), determine the order of the
solvable group Pker(G)/ Soc∗(G), or even decide whether or not Pker(G) =
Soc∗(G).

The most elusive part of the project is the determination of the solvable
radical Sol(G); we are unable to find a set of generators for Sol(G), or even
to decide whether or not Sol(G) = 1.

For black-box groups of characteristic p (Section 8.2), we eliminate the
assumption that a superset P of primes is given.
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Theorem 1.2 Given a black-box group G of characteristic p, one can con-
struct, in Monte Carlo polynomial time, all the objects listed in Theorem 1.1.

We remark that for black-box groups of characteristic p we are able to
make considerable inroads into Sol(G) and the only really elusive part that
remains is Op(G), the largest normal p-subgroup. We give the details in a
subsequent paper [BaB2].

1.4 Overview of the algorithm

We indicate the overall structure of the algorithm announced in Theorem 1.1.
The first phase consist of the construction of the semisimple socle. For

this phase, we work in the black-box group Ḡ = G/ Sol(G). We note that
Sol(Ḡ) = 1.

First we need to find a minimal subnormal subgroup of Ḡ. This is
accomplished by a process of “blind descent” along a subnormal chain (Sec-
tions 6.3, 7.1).

The normal closure of a minimal subnormal subgroup is semisimple (be-
cause Sol(Ḡ) = 1). Our key auxiliary process splits a semisimple group
into its simple factors (Section 5). This decomposition helps to extend our
semisimple normal subgroup of Ḡ until the entire socle of Ḡ is found (Sec-
tion 7).

The decomposition of Soc(Ḡ) = Soc∗(G)/ Sol(G) makes it easy to con-
struct the permutation representation ϕ (Corollary 5.2). Given ϕ, stan-
dard permutation group techniques yield generators for Pker(G) (Proposi-
tion 3.4). Finally, a quasi-composition chain of Ḡ is easily constructed: we
apply Luks’s composition chain algorithm [Lu87] to G/ Pker(G), followed by
three steps of the derived series of Pker(G)/ Sol(G) and ending with a com-
position chain of Soc∗(G)/ Sol(G) which is obtained from the decomposition
of Soc∗(G)/ Soc(G) (Section 5).

The proof of Theorem 1.2 requires the introduction of a set of “pretend-
primes” to be used in determining the “pseudo-order” of elements (Section 8)
to be used in our algorithms wherever computation of the order would be re-
quired. (Computing the order would require prime factorization, a problem
not known to be solvable in polynomial time, cf. Section 8.1.)

Two results on finite simple groups, stated in Section 4, will play a critical
role in the analysis of our algorithms. One is a bound by Landazuri and
Seitz [LaS] stating that the degree of a representation of a Lie-type simple
group in the wrong characteristic must be very large. We apply this result in
several different contexts: in the analysis of “blind descent” (Lemma 6.3), in
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the selection of the “pretend-primes” for the calculation of “pseudo-order,”
and for handling the p′-part of the solvable radical [BaB2].

The other critical result states that for any prime r, elements of order
not divisible by r occur with non-negligible frequency in every finite simple
group (Theorems 4.2, 8.7). This statistical result is the key to breaking a
direct product of simple groups to its factors and finding the semisimple socle
(Sections 5, 7). Another application is to finding the center of a quasisimple
group (see [BaB2]).

2 Brief history

2.1 Permutation groups

Charles Sims pioneered the design of efficient algorithms for the rudimentary
tasks of managing permutation groups (membership, order, normal closure)
based on his fundamental data structure of “strong generators” [Si71, Si78].
A polynomial time analysis of closely related algorithms was first given in
[Ba79] in the context of an application to the Graph Isomorphism prob-
lem. [Ba79] employed randomization and introduced the term “Las Vegas.”
Motivated by [Ba79], a seminal paper by Furst, Hopcroft, and Luks [FuHL]
designed a variant of Sims’s algorithm and proved that it runs in polynomial
time. Other polynomial-time versions of Sims’s algorithm were described by
Knuth [Kn] and Jerrum [Je]. Seress found that Sims’s original version, too,
runs in polynomial time [Se].

[FuHL] was followed by a succession of powerful polynomial-time algo-
rithms for permutation groups. We highlight two results: Luks’s algorithm
to construct a composition chain along with permutation representations
of the composition factors [Lu87], and Kantor’s algorithm to construct the
Sylow subgroups [Ka].

2.2 Complexity theory in black-box groups

The first paper addressing the complexity of basic computational problems
for finite matrix groups was [BaSz]. That paper introduced the framework
of black-box groups and proved that membership in subgroups of black-box
groups is in the complexity class NP (has polynomial length verification)
by proving that any element of a finite group G can be reached by at most
(1+log |G|)2 group operations from any set of generators. The combinatorial
idea of the proof became later the basis of the polynomial-time Monte Carlo
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algorithm for selecting nearly uniformly distributed random elements in a
black-box group (Theorem 3.2).

Another result of [BaSz] asserts that determining the order of a black-
box group is in the complexity class NP assuming the “Short Presentation
Conjecture” which states that every finite simple group T has a presentation
(in terms of generators and relations) of total bitlength ≤ (log |T |)c, and
that such a presentation can be constructed efficiently (in Las Vegas time
≤ (log |T |)c), given the standard name of T . This conjecture has since
been verified for all finite simple groups except for the three families of
rank-1 twisted groups: the unitary groups PSU(3, q) = 2A2(q), the Suzuki
groups Sz(q) = 2B2(q), and the Ree groups R(q) = 2G2(q) [BaGKLP].
A full proof of this conjecture will play an essential role in turning Monte
Carlo algorithms for matrix groups into the more desirable Las Vegas variety
(guaranteed no error), a significant conceptual and practical leap because of
the use of unproven heuristics in random sampling from black-box groups
and matrix groups (Section 3.3, cf. [Ba97]).

2.3 Polynomial time algorithms in matrix groups

The first polynomial-time algorithms for a host of problems on matrix groups
appear in Luks’s paper [Lu92]. In contrast to virtually all subsequent work,
Luks’s algorithms are deterministic. Luks showed that deciding solvability
of matrix groups over finite fields is in polynomial time. Moreover he gave
algorithms for membership testing and order, computing presentations, com-
position chain, as well as many other problems, for solvable matrix groups.
Many of these algorithms are not polynomial time (in the bit-length of the
input) but depend polynomially on the largest prime divisor of |G|, other
than the characteristic. Some limitation of this kind seems indispensable
for the membership and order problems because of the number theoretic
obstacles mentioned in Section 3.5.

Algorithms for membership testing, order, computing presentations, com-
position chain, and other problems for (not necessarily solvable) finite matrix
groups are given by Beals and Babai [BeB]. Unlike the algorithms of [Lu92],
these algorithms are randomized (Las Vegas). As with Luks’s algorithms,
the timing is polynomial (in the bit-length of the input) in characteristic 0
(algebraic number fields), but depends polynomially on an additional pa-
rameter ν in characteristic p. The parameter ν = ν(H) is defined as the
largest integer k such that H has a composition factor L 6= Zp which has no
permutation representation of degree < k.

The large abelian composition factors represent a genuine obstacle (see
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Section 3.5). We survey recent progress on how to get around some of the
nonabelian obstacles in Section 9.

2.4 The Aschbacher classification

In this paper we use “polynomial time” as the criterion of efficiency. A
more traditional approach measures efficiency by practical performance. We
note here some important work in this direction. Many of the algorithms
referred to below have not been shown to run in polynomial time. However,
implementations in GAP and Magma are available with impressive test data;
they work even in dimensions over 100.

Aschbacher has classified the maximal subgroups of the finite classical
groups [As]. We give a summary of the Aschbacher classification: Let G ≤
GL(d, q), and let Z = Z(GL(d, q)) ∩G. Let V denote the vector space F d

q .
Then at least one of the following holds:

C1 G is reducible.

C2 G is imprimitive.

C3 G fixes a tensor decomposition V = U ⊗W .

C4 G preserves a symmetric tensor decomposition: V = V1⊗V2⊗· · ·⊗Vm,
where each Vi has the same dimension r, and d = rm.

C5 G acts semi-linearly over an extension field Fqe , so V = F
d/e
qe and

G ≤ ΓL(d/e, qe).

C6 Modulo Z, G is conjugate to a subgroup of GL(d, q′), for some q′ | q.

C7 d = rm for some prime R, G normalizes an r-group R, of order r2m+1

or 22m+2. In the first case, R is extraspecial; in the second case, R is
symplectic.

C8 K ′ ≤ G/Z ≤ K, where K is a projective general linear, symplectic,
orthogonal, or unitary group in dimension d over Fq.

C9 T ≤ G/Z ≤ Aut(T ), where T is nonabelian simple.

The “recognition project,” led by C. R. Leedham-Green, is guided by
the following computational problem related to the Aschbacher classifica-
tion: given a list of generators for a subgroup H of GL(n, q), find a maximal
subgroup G ≤ GL(n, q) containing H. For several of the classes C1–C9,
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algorithms exist which seem to perform well in practice. The classes C1 and
C5 are handled by the Meataxe [Par84, HoR94]. Since the Meataxe, the
first significant step in the recognition project was the Neumann–Praeger
algorithm [NeP, HoR92] for case C8 in the case K is PGL(d, q). The
other classical groups that can arise in C8 are handled by Niemeyer and
Praeger [NiP98, NiP97].

In many cases, H has a normal subgroup N preserving some structure
which is acted on by H. For example, in case C4, H permutes the Vi, and
N is the kernel of this action. The SMASH algorithm [HLOR2], when given
an element x ∈ N \ Z, attempts to find H in classes C2, C3, C4, and C7.
SMASH does not solve, in general, the problem of finding such an x, though
the SMASH authors have efficient heuristics for C2 [HLOR1]. And of course,
G may intersect N trivially (or only in Z), in which case SMASH does not
apply. Leedham-Green and O’Brien [LeO] have given another approach to
C3.

Any implementation of our ideas should make use of the practical suc-
cesses of the recognition project. The SMASH algorithm seems particularly
suited to our needs, since we have, in many instances, algorithms for finding
elements of nontrivial proper normal subgroups. Such an element, supplied
to SMASH, may yield a permutation representation of G (in cases C2, C4, or
C7), which is an important subgoal of our algorithm. Conversely, ideas from
the theory of black-box group algorithms should be useful in the recognition
project. In the case G is in class C9, what we have is, for practical purposes,
a black-box group. In cases where SMASH is applicable, we present a well
developed theory of how to find elements that are likely to lie in nontrivial
proper normal subgroups (Section 6).

3 Algorithmic preliminaries

3.1 Black-box groups

A black-box group G is a finite group whose elements are encoded by (0, 1)-
strings (“codewords”) of uniform length n [BaSz]. We call n the encoding
length of the black-box group. This convention implies |G| ≤ 2n.

Group operations on the codewords are performed by a “black box” at
unit cost. The operations are multiplication, inversion, and identity testing
(decision whether or not a given string encodes the identity). A black-box
group is given by a list of generators.

Significantly, we do not require the encoding to be unique. Our most
important models of black-box groups are quotients of matrix groups over
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finite rings: G = H/N where N / H ≤ GL(d, R) for some finite ring R
(usually a finite field). The elements of G are encoded as matrices (elements
of H). Identity testing requires membership testing in N (magically, or by
some algorithm).

We say that a subgroup H of the black-box group G is recognizable in
time t if for every g ∈ G, membership of g in H can be tested in time t.
Instead of “time” we can use other measures of complexity, e. g.. the number
of group operations required. (The membership algorithm for H must not
depend on how g is constructed from the generators of G. If the sequence of
operations leading to g is required for the decision, we say that H is weakly
recognizable in time t. However, we shall not need this concept here.) The
following evident fact will be very useful and demonstrates the power of the
black box model.

Proposition 3.1 Let G be a black-box group and H / G a normal subgroup
recognizable in time t (or at cost t). Then the black box for G can simulate
a black box for G/N in time t per operation.

In fact, the cost of the simulation is one step per multiplication/inversion,
and t per identity query. Note that identity queries typically make up only
a small fraction of the operations; they do not occur at all in the process of
random sampling, one of the expensive routines.

If a black-box group of encoding length n is given by a list of k genera-
tors then the bit-length of the input is kn and therefore a polynomial-time
algorithm makes ≤ (kn)c steps for some constant c > 0.

Convention. We shall use the letter c to denote positive constants; separate
occurrences of c may refer to different constants. We also use c1, c2, . . .
to denote positive constants; repeated occurrences of ci refer to the same
constant. The letter ε denotes a positive quantity, not necessarily a constant,
and separate occurrences of ε may refer to different values.

3.2 Monte Carlo and Las Vegas algorithms

Our algorithms will use randomization; therefore the output will not nec-
essarily be correct. However, the probability of error will be guaranteed to
be less than ε, regardless of the input. The parameter ε is chosen by the
user. The cost increases proportionally to log(1/ε), so exponentially small
error probability is achieved at polynomial cost. We should emphasize that
probabilities are over the coin tosses made in the course of the execution
of the algorithm. We do not assume any probability distribution over the
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input space: we perform “worst case” analysis (as opposed to “average case
analysis”).

We use the term “Monte Carlo algorithm” to refer to any randomized
algorithm with a user-specified arbitrarily small error bound ε (which may
be proven or heuristic). A polynomial time Monte Carlo algorithm is guar-
anteed, for any requested error margin ε > 0, to stop in time O(nc log(1/ε))
and have error probability ≤ ε.

“Las Vegas algorithms” form an important subclass of Monte Carlo al-
gorithms: they never make an erroneous output, but with probability ≤ ε,
they are allowed to report failure.

3.3 Random sampling from groups

By a random element of a finite set S we mean a nearly uniformly distributed
random member of S. Near-uniformity means that every element of S has
(1 ± ε)/|S| chance to be selected; here ε > 0 is a parameter chosen by
the user. When we speak of selecting several random elements, we always
assume independent random choices.

A critical tool in all algorithms under discussion is a method of select-
ing random elements from a black-box group. Our polynomial-time claims
heavily depend on the following result.

Theorem 3.2 ([Ba91]) An ε-uniformly distributed random element of a
black-box group can be selected in Monte Carlo polynomial time at a cost of
O(nc log(1/ε)).

This algorithm uses randomization but it makes no error in the sense
that it is guaranteed to produce an ε-uniformly distributed element. Several
independent elements from the same distribution can be obtained by repeat-
ing the experiment with a separate set of coin tosses. The actual result in
[Ba91] gives a separate cost estimate for preprocessing and a considerably
lower cost per random element generated (preprocessing costs O(n5) group
operations and yields Θ(n) random elements; additional random elements
cost O(n) group operations each).

While this algorithm does not produce uniformly distributed random
group elements, the slight deviation from uniformity has no significant effect
on the analysis of our algorithms.

The “product replacement algorithm” [CeLMNO], a popular heuristic in-
troduced by Charles Leedham-Green and Leonard Soicher, is another candi-
date for a polynomial-time method for nearly uniform selection from a finite
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group. However, very little has yet been proven in this direction (cf. [Ba97]).
Of course in practical implementations of either of the above algorithms one
uses much fewer operations than required for proven performance, and hopes
for the best.

When efficient but unproven heuristics are invoked for sampling in groups
under a randomized algorithm, Las Vegas algorithms are greatly superior to
Monte Carlo since they never err, even if the distribution of the “random”
group elements is not as nearly uniform as desired. The worst that can hap-
pen in such a case is that the algorithm reports failure more frequently then
expected and thus a weakness of the sampling method is discovered. How-
ever, with Monte Carlo methods, the inadequacy of the sampling method
may mean frequent erroneous outputs which may remain undetected.

Unfortunately, most of the algorithms in this area are not Las Vegas, and
there is little hope for turning them into Las Vegas as long as some cases of
the “Short Presentation Conjecture” (Section 2.2) remain open (cf. [Ba97]).

For a detailed discussion of the concepts involved in and possible pitfalls
of Monte Carlo algorithms in finite groups, we recommend [Ba97].

3.4 Further rudiments: normal closure and applications

Recall our standard notation: G is a black-box group of encoding length n
and therefore |G| ≤ 2n. It follows that any set of more than n generators
is redundant. In fact, in Monte Carlo polynomial time one can replace any
set of generators by a list of O(n) generators [BaCFLS], i. e., the number of
generators is ≤ cn for some constant c. Therefore we shall assume that all
groups considered are given by O(n) generators.

A fundamental polynomial-time Monte Carlo algorithm given in [BaCFLS]
is constructing the normal closure 〈SG〉 of a set S ⊆ G (i. e., finding a set
of O(n) generators for 〈SG〉). We note that this claim does not depend on
nearly uniform random selection from G and uses the more elementary tool
of “random subproducts.”

As an immediate consequence, the following subgroups are constructible
in polynomial Monte Carlo time: the commutator subgroup G′, all members
G(i) of the derived series, the stable derivative G(∞) = G(n) (the smallest
normal subgroup such that G/G(∞) is solvable), the lower central series. It
follows that in polynomial Monte Carlo time one can decide solvability and
nilpotence of a black-box group, as well as decide whether or not G is a
p-group for a given prime p.

It follows that the following subgroups are recognizable in Monte Carlo
polynomial time:
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Op(G) – the largest normal p-subgroup of G,
F (G) – the largest nilpotent normal subgroup (Fitting subgroup)
Sol(G) – the solvable radical of G (largest solvable normal subgroup),
Z(G) – the center.

Indeed, to test membership in Sol(G), for instance, we test, given g ∈ G,
whether or not the normal closure 〈gG〉 is solvable. – We can also combine
these operators; e. g., the inverse image of Z(G/Op(G)) is also recognizable
in Monte Carlo polynomial time.

We note an immediate consequence of particular importance:

Corollary 3.3 If G is a black-box group then a black box for G/ Sol(G) can
be simulated in Monte Carlo polynomial time.

Indeed, this follows by Proposition 3.1 in light of the recognizability of
Sol(G).

We note that this corollary works in spite of the fact that we are not able
to find any elements of Sol(G) or even to tell whether or not |Sol(G)| = 1.

Another important consequence concerns the kernel of a permutation
representation. The following is folklore.

Proposition 3.4 Let G be a black-box group and ϕ : G → Σk be a permu-
tation representation. Suppose ϕ is given by the images of the generators of
G. Then ker(ϕ) can be constructed in Monte Carlo polynomial time.

Proof. Let N = ker(ϕ) and H = G/N ≤ Σk. Let S be the given set
of generators of G and let S̄ be the image of S under ϕ. Starting from
S̄, standard permutation group techniques produce a presentation of H in
terms of a new set S′ ⊇ S̄ of generators and relations in terms of S′ ([Si78,
FuHL, Kn, Je]). Lift the same sequence of group operation to G, starting
from S rather than from S̄. Create a set R of elements of G by starting
from the empty set and adding each g ∈ G computed in the above process
satisfying ϕ(g) = 1. (This procedure is deterministic.) It is easy to see that
N = 〈RG〉.

3.5 Abelian obstacles

Abelian groups and abelian quotients represent obstacles to answering even
the simplest rudimentary questions about black-box groups.

Assume the black-box group G is known to be elementary abelian of
order pk where p is known but k is unknown. Then it takes an exponential
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number of black-box operations to determine k, or, for large primes, even
to decide whether or not k = 1 [BaSz]. Therefore linear algebra cannot be
addressed strictly within the context of black-box groups.

For matrix groups of characteristic p, linear algebra of elementary abelian
p-subgroups is straightforward. However, this is not the case for elementary
abelian r-subgroups, where r 6= p.

The constructive membership problem asks not only whether some g ∈ G
belongs to a given subgroup H ≤ G or not, but if so, it asks to construct
g from the generators of H. If we want to use Gaussian elimination for
linear algebra in elementary abelian r-groups, we need constructive mem-
bership. However, constructive membership in a cyclic subgroup of order r
in F×q (r|q−1) is precisely the discrete log problem which is not known (and
not believed) to be solvable in (Monte Carlo) polynomial time. (For the
best current algorithms, see [Lo], [AdD], [Ad].) Therefore, the order of an
abelian matrix group over Fq, consisting of diagonal matrices only, cannot
be determined by known methods in polynomial time, even if the group is
elementary abelian of known exponent.

Even determining the order of an element may not be feasible in poly-
nomial time because of its close relationship to the problem of factoring
integers, another problem of computational number theory not believed to
be solvable in polynomial time. (We analyse the complexity of determining
the order of elements in Sections 3.6 and 8.1). However, for most purposes,
one can avoid using the exact order of an element, and be content with its
“pseudo-order,” based on a set of “pretend-primes” (Section 8.4).

Other “abelian obstacles” concern the discovery of certain abelian (or
solvable) subgroups and quotients and may be unrelated to computational
number theory. The two most important questions in this direction are
stated in the “Open problems” section; see especially Problems 10.2 and
10.3.

The moral of the present paper is that, in a sense, the only obstacles
to Monte Carlo polynomial-time computation in black-box groups are the
“abelian obstacles.”

3.6 Order, prime factors

The “primes of a group G” are the prime divisors of |G|. For our results
about black-box groups without any further restriction, we shall assume
that together with the black-box group G, a superset P of the primes of G
is given. The combined bit-lengths of the primes in P is then part of the
input length with respect to which our algorithms run in polynomial time.
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The following is well known.

Claim 3.5 Given a black-box group G with a superset P of its primes, we
can determine the order of any element of g ∈ G in polynomial time.

Proof. First we construct an integer m =
∏

p∈P pkp such that |g| divides
m. For instance, |G| divides m if we we choose kp = bn/ log pc. (Smaller
exponents will suffice if more information about G is available, cf. [CeL].)
Given m, the following algorithm determines the order of g.

Algorithm Order(G,P, g, m)

Initialize: ` := m (Note: g` = 1)
for r ∈ P

find largest t such that rt|` and g`/rt
= 1

` := `/rt

end
return `

Using repeated squaring for calculating powers, the for loop takes O(log m)
multiplications, adding up to a total of O(|P| · log m) ≤ O(|P|2 · n). This
justifies the polynomial time claim. A divide-and-conquer trick described in
[CeL] reduces the number of operations to O(log(1 + |P|) · log m).

4 Two results on simple groups

In this section we state two group theoretic results which will be crucial for
the analysis of our algorithms.

4.1 Smallest degree of representations in the wrong charac-
teristic

Landazuri and Seitz [LaS] proved that if a simple group of T Lie type of
characteristic r 6= p is represented in characteristic p then the dimension
of the representation must be very large: it is polynomially related to the
size of the natural module on which T acts (projectively). A result of Feit
and Tits [FeT] implies that the same conclusion holds for representations of
extensions of T (i.e., groups with T as a homomorphic image). We state a
consequence of their combined result.

Theorem 4.1 ([LaS, FeT]) Let T be a finite simple group of Lie type of
characteristic r. Let V be the natural module (in characteristic r) on which

16



T acts projectively. Let H be a finite group which involves T (as a quotient of
a subgroup). Suppose H has a faithful projective representation of dimension
d in characteristic p 6= r. Then |V | ≤ dc1 for some absolute constant c1.

4.2 Some statistical group theory

Let r be a prime number. A group element is called r-regular if its order is
not divisible by r. We shall make extensive use of the following statistical
result on r-regular elements.

Theorem 4.2 ([BaPS]) Let G be a finite simple group and r a prime num-
ber. Then at least a c/d fraction of the elements of G is r-regular where c > 0
is an absolute constant and d is the dimension of G, defined as follows. The
dimension of the alternating group Ak is k, the dimension of a classical sim-
ple group is the dimension of the projective space on which the group acts;
all other simple groups have dimension 1.

We shall require a more detailed version of this result, stated as Theo-
rem 8.7.

5 Splitting a semisimple group

We call a group G semisimple if G is the direct product of nonabelian simple
groups.

If G1, . . . , Gk is a family of black-box groups of total encoding length
n then the direct product G = G1 × · · · × Gk can be represented in the
natural way as a black-box group of encoding length n. The cost of a group
operation in G will be the sum of the costs of group operations in each Gi.

A black-box decomposition of a black-box group G into a direct product
G = G1 × · · · × Gk means the construction of black-box representations of
each Gi.

Theorem 5.1 Let G be a black-box group given together with a set P ⊇
π(G). Assume that G is known to be semisimple. Then a black-box de-
composition of G into its simple factors can be constructed in Monte Carlo
polynomial time. Each simple factor will be represented as a black-box group.

Note that such a decomposition immediately implies that a composition
series of G can be constructed in polynomial time: namely, if G = T1 ×
· · · × Tk is a black-box decomposition then the the family of prefixes Hi =
T1 × · · · × Ti is also constructed in polynomial time.

We state an important corollary.
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Corollary 5.2 Let G be a black-box group given together with a set P ⊇
π(G). Let N = T1 × · · · × Tk be a given semisimple normal subgroup of
G and let ϕ : G → Σk be the permutation representation of G defined by
conjugation action on the set {T1, . . . , Tk}. Then ϕ can be constructed in the
following strong sense: in Monte Carlo polynomial time we can set up a data
structure which allows, for any g ∈ G, to compute ϕ(g) in (deterministic)
polynomial time.

Proof of Corollary 5.2. By Theorem 5.1 we find generators for each Ti in
Monte Carlo polynomial time. Let now g ∈ G and σ := ϕ(g) ∈ Σk. Then
σ(i) = j exactly if T g

i does not centralize Tj ; this circumstance is verified by
comparing the generators of each.

The rest of this section is devoted to the proof of Theorem 5.1. Versions
of this process and its analysis lead to our key algorithm: constructing the
semisimple socle (Section 7).
Proof of Theorem 5.1. Let m be a known multiple of |G|, constructed as in
the proof of Claim 3.5; all primes dividing m are from P.

Let m =
∏

r∈P rkr and let mr = m/rkr , i. e., mr is the maximal r-free
divisor of m.

Assuming G is semisimple, first we describe how to construct one of its
simple factors.

Algorithm Construct Simple Factor(G, ν)

Initialize: R := G
repeat ν times

choose random g ∈ R
for r ∈ P

h := gmr

if h 6= 1 then R := 〈hG〉
end

end
return R

Claim 5.3 If G 6= 1 is semisimple then Algorithm
Construct Simple Factor(G) returns a normal subgroup R of G which
is simple with probability ≥ 1 − ε assuming ν ≥ c2

√
n log(1/ε) where c2 is

an explicit constant.

Note that these are proven worst-case guarantees; much fewer rounds
may suffice in practice, and the theoretical estimates can be improved if
information about the Ti is available.
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Proof. Let G = T1 × · · · × Tk, Ti simple, nonabelian. For I ⊆ {1, . . . , k},
set TI =

∏
i∈I Ti. We use the fact that the groups TI are the only normal

subgroups of G.
We refer to each iteration of the “repeat” loop as a “round.” Let Rj

denote the group R at the end of round j; R0 = G. Observe that for all j
we have 1 6= Rj ≤ Rj−1 and Rj / G.

We say that component i is successful in round j if either Rj = Ti (which
means we are done) or Rj ∩Ti = 1. Clearly, the output Rν is simple exactly
if each component is successful in some round.

Let δi denote the lower bound provided by Theorem 4.2 for the probabil-
ity that for a prime r, a random element of Ti is r-regular. By the estimate
given in Theorem 4.2 we have δ−2

i ≤ c3 log |Ti| and therefore

k∑
i=1

δ−2
i ≤ c3 log |G| ≤ c3n (6)

for an explicit constant c3.
We claim, that, given any history of outcomes of earlier rounds, the

probability that component i is not successful in round j is at most 1 −
(59/60)δi.

Indeed, in order for this event to occur it is necessary that Rj−1 ≥ Ti×T`

for some ` 6= i. Let us consider the random element g = (g1, g2, . . .) selected
in round j, where the gu ∈ Tu are the components of g with respect to
our direct decomposition. We may model the random choice of g by first
selecting g` at random, then gi, and then the rest. With probability ≥ 59/60,
g` 6= 1. In this case, let r be a prime dividing the order of g`. Then with
probability ≥ δi the order of gi is not divisible by r. If this is the case, then
h = (h1, h2, . . .) satisfies h` 6= 1 and hi = 1. But this means Ti ∩Rj = 1 and
component was successful in this round.

The probability that component i remains unsuccessful after ν rounds is
therefore

≤
(

1− 59δi

60

)ν

< exp
(
−59δiν

60

)
= exp

(
−δi

√
2c3n · 2µ

)
<

(
1

2δ2
i c3n

)µ

(7)
where µ = 59ν/(120

√
2c3n) > ν/3

√
c3n. Finally the probability that Rν is

not simple is less than

k∑
i=1

(
1

2δ2
i c3n

)µ

< 2−µ < 2−ν/3
√

c3n ≤ ε (8)
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by inequality (6), assuming c2 = 3
√

c3.

Suppose now that R is a given simple factor of the semisimple group G. Our
next task is to construct the complement H of R in G defined by G = R×H.

Algorithm Construct Complement(G, R, ν)

Initialize: H := 1
repeat ν times

choose random g ∈ G
for r ∈ P

h := gmr

if [h, R] = 1 then H := H · 〈hG〉
end

end
return H

Claim 5.4 If G is semisimple and R / G is simple then Algorithm
Construct Complement(G, R) returns a normal subgroup H of G such
that G = R×H with probability ≥ 1− ε assuming ν ≥ c2

√
n log(1/ε) where

c2 is the same explicit constant as in Claim 5.3.

Proof. As before, let G = T1 × · · · × Tk. We may assume R = T1. Let
T = T2 × · · · × Tk. Let Hj denote the group H at the end of round j;
H0 = 1. Observe that for all j we have Hj−1 ≤ Hj ≤ T and Hj / G.

We say that component i 6= 1 is successful in round j if Hj ≥ Ti. Clearly,
the output Hν is T exactly if each component i = 2, . . . , k is successful in
some round.

We use the notation δi introduced in the proof of Claim 5.3. As before, we
claim, that, given any history of outcomes of earlier rounds, the probability
that component i 6= 1 is not successful in round j is at most 1− (59/60)δi.

Indeed, as before, let us consider the random element g = (g1, g2, . . .)
selected in round j (gi ∈ Ti). We imagine this time that we first select gi

at random, then g1, then the rest of the components. The rest of the proof
proceeds exactly as the proof of Claim 5.3.

Finally, to obtain the desired decomposition of the semisimple group G we
separate a simple factor T1, compute its complement H1, and repeat the
process with H1 in the role of G. This completes the proof of Theorem 5.1.
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6 Finding a proper normal subgroup

Our first main goal is to construct a simple subnormal subgroup in G/ Sol(G).
This will be accomplished by a gradual descent along a subnormal chain.
The steps of the process are given by the Monte Carlo algorithm Perm(G, m)
[BeB] which takes as inputs a black box group G and a positive integer m
and produces one of the following outputs using (m + n)c group operations:

(a) a faithful permutation representation of G;
(b) a nontrivial normal subgroup 1 6= H / G.

In case (b), H is not necessarily proper. However, the algorithm comes with
the following guarantee:

Theorem 6.1 If G has a proper subgroup of index ≤ m and case (b) is
produced by Algorithm Perm(G, m) then H 6= G holds with large probability.
If case (a) is produced then the degree of the permutation representation
obtained is always ≤ mc.

Note that the condition in the Theorem is equivalent to requiring that G
has a nontrivial permutation representation of degree ≤ m. An important
corollary states that if a simple group G of Lie type is represented in the
wrong characteristic then a faithful permutation representation of G can be
found in Monte Carlo polynomial time (see Theorem 8.6).

The name of the algorithm owes to its attempts at finding a (not nec-
essarily faithful) permutation representation of G. Although in general it
will not find such a representation, it is likely that it will find a nonidentity
element of the kernel of a non-faithful permutation representation of small
degree if such a representation exists.

In this section we describe the algorithm Perm and outline the proof of
Theorem 6.1.

6.1 The normal still

Since normal closures can be calculated in Monte Carlo polynomial time, a
case (b) output will be produced once we found any nontrivial element of a
proper normal subgroup.

In fact it suffices to produce an element which has a non-negligible chance
(≥ 1/mc) of belonging to a proper normal subgroup. Then after O(mc)
trials, we expect to have encountered an element that actually does belong
to a proper normal subgroup. We cannot decide which one, since we do not
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have membership testing, so we have no direct way of deciding whether a
subgroup is proper.

We overcome this difficulty by “distilling” any list of candidate elements
into a single nonidentity element guaranteed to belong to a proper a proper
normal subgroup if any member of the list does.

It suffices to show how to do this with a list of length 2. The following
is from [BeB]:

Lemma 6.2 Given nonidentity elements a, b of a nonabelian black-box group
G, we can in Monte Carlo polynomial time calculate a nonidentity element
c of G such that if either a or b lies in a proper normal subgroup of G, then
so does c.

Proof. If [a, b] 6= 1 then we may take c = [a, b], so assume a and b commute.
Let T be a generating set for 〈bG〉. If [a, T ] 6= 1 then we may take c = [a, t]
for some t ∈ T , so assume a centralizes the normal closure of b. If a lies in
the center of G we may take c = a. Otherwise, since a centralizes 〈bG〉 but
not all of G, we know 〈bG〉 6= G so we may take c = b.

We remark that for matrix groups, Lemma 6.2 can be strengthened: the
only randomized part of the algorithm is testing if a centralizes 〈bG〉. If G
is a matrix group, then we can compute in deterministic polynomial time a
basis consisting of elements of 〈bG〉 for the matrix algebra generated by bG.
Then a centralizes 〈bG〉 iff it commutes with every element of this basis.

6.2 Conjugacy classes large and small

We need the following useful statistical property of simple groups: certain
powers of elements of some large conjugacy classes belong to small conjugacy
classes.

Lemma 6.3 Let T be a nonabelian simple group admitting a faithful permu-
tation representation of degree ≤ m. Let x be a random element of T , and
let r be a randomly selected prime divisor of |x|. Let y = x|x|/r. Then with
probability ≥ 1/mc, y will lie in a conjugacy class of Aut(T ) of cardinality
≤ mc4, where c4 is an absolute constant.

Proof. If T is not an alternating or classical group, then Theorem 4.1 implies
that |T | ≤ mc4 , so any conjugacy class is small enough.

For alternating groups, let us consider the case T = Ak where k is even
and not divisible by 3. In this case the cycle structure of x is {3, k − 3}
with probability 1/(3k − 9). If x is such an element, then with probability
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at least 1/k, the prime 3 will be chosen for r, and y will be a 3-cycle (with
conjugacy class size O(k3)). Now k ≤ m, justifying the claim. In the other
cases, look for elements x with cycle structure {3, k − s} for an appropriate
value 3 ≤ s ≤ 6.

For classical groups acting projectively on Fk
q , Theorem 4.1 implies that

qk ≤ mc1 where c1 is the constant appearing in Theorem 4.1. So it suffices to
show that with probability ≥ q−ck, the element y acts trivially on a subspace
of bounded codimension.

We may assume k ≥ c. (Each occurrence of c represents a different
constant.) Now G contains a subgroup H ∼= G1 ×G2 where G1 is the same
kind of classical group (or its central extension) acting on a space of bounded
codimension, and G2 is nontrivial; |G : H| < qck. Now Theorem 4.2 implies
that if x ∈ H then y ∈ G2 with probability ≥ c/(kt) where t is the number
of prime divisors of |x|.

6.3 Blind descent: the Perm algorithm

We now give the algorithm for finding an element of a proper normal sub-
group. This algorithm represents one step in the “blind descent” with the
goal to reach a simple subnormal subgroup (Section 7.1).

Algorithm Perm1(G, m)

choose random x, z ∈ G
choose random prime r dividing |x|
y := x|x|/r, w := [y, z]
if w 6= 1 then return w
else partially enumerate yG

if |yG| ≤ mc4 then
return permutation representation of G on yG

else report failure

Theorem 6.4 Assume G = G′ and G has a nontrivial permutation rep-
resentation of degree ≤ m. Then with probability ≥ 1/mc5, Algorithm
Perm1(G, m) either returns an element w 6= 1 which belongs to a proper
normal subgroup of G, or returns a nontrivial permutation representation of
G of degree ≤ mc4.

Proof. It follows from the assumptions that G has a nonabelian simple
quotient T ≤ Σm. Let ϕ : G → T be an epimorphism. Note that ϕ, and
indeed the isomorphism type of T , are not known to the algorithm.
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By Lemma 6.3, we have a reasonable hope (≥ m−c) that the conjugacy
class of ϕ(y)T has at most mc4/2 elements. Now the probability that w ∈
ker(ϕ) is 1/|T : CT (ϕ(y))| = 1/|ϕ(y)T | ≥ 2m−c4 .

Moreover, if |yG| > mc4 then the probability that w = 1 is 1/|G : CG(y)| = 1/|yG| < mc4 .
So overall the probability that the algorithm succeeds in the sense stated in
the Theorem is > m−c−c4 .

Algorithm Perm(G, m)

flip coin
if heads then return G′

else repeat mc log(1/ε) times
W := ∅
Perm1(G, m)
if nontrivial permutation representation ϕ found then

if ϕ faithful then return ϕ, exit
else let u ∈ ker(ϕ), u 6= 1
return 〈uG〉, exit

else if w 6= 1 then add w to W
end
if W 6= ∅ then

u := element distilled from W (Section distill.sec)
return 〈uG〉

else return G

The proof of Theorem 6.1 is now immediate.

The algorithm described is a very simple one and serves to justify the
polynomial-time claim. There is a lot of room for improvement, both theo-
retical and heuristic. We comment on some of these in Section 6.4.

6.4 Speedups

It is possible to extend the Perm algorithm to work in some cases where no
permutation representation of small degree exists. Suppose that, for some
simple group T , we can test in t steps (group operations) if a given black-box
group G is isomorphic to T . Then, essentially in t steps, we can construct a
nontrivial normal subgroup of G if G is not isomorphic to T but has T as a
homomorphic image. This was observed in [Be97]. Note that there are many
black-box recognition algorithms which work for entire classes of groups; we
do not have to treat each possible homomorphic image T separately.
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Theorem 6.5 ([Be97]) Suppose that the black-box group G has a nontriv-
ial normal subgroup N with G/N isomorphic to the group T . Then from the
transcript of a black-box algorithm which decides that G is not itself isomor-
phic to T , we can in Monte Carlo polynomial time compute an element of
a nontrivial proper normal subgroup of G.

By the transcript of the algorithm we simply mean the sequence of queries
to the black-box, together with the responses, from a run of the algorithm.

This means that any improvements to the small/large conjugacy class
algorithm for black-box simple groups automatically yield corresponding
improvements to the algorithm for the problem of obtaining proper normal
subgroups. For alternating groups, the small/large conjugacy class algo-
rithm takes O(k3) steps, where k is the degree of the group, to achieve suc-
cess probability 1/k. This algorithm thus takes O(k4) steps to have a high
(1− ε) success probability. However, a recent algorithm by Beals, Leedham-
Green, Niemeyer, Praeger, and Seress [BeLNPS], constructs a permutation
representation of black box alternating groups in O(k log k) steps. This is
an improvement by a factor of nearly k3, hence the algorithm for finding
a nontrivial normal subgroups of groups with an alternating homomorphic
image is sped up by the same factor.

In the terminology of Section 9.2, the above result means that black-box
alternating groups Ak admit weak as well as strong constructive recognition
in O(k log k) steps.

Weak constructive recognition of T is clearly sufficient for the condition
of Theorem 6.5. Therefore the striking results to be discussed in Section 9.2
become relevant: if T is a classical group of dimension d over a field of order
q then T , as a black-box group, admits (weak and strong) constructive
recognition in time (dq)c [KaS]. (Compare this with the time qcd required
by the large/small conjugacy class method.)

7 Constructing the semisimple socle

In this section, we assume Sol(G) = 1.

7.1 Blind descent: constructing a semisimple normal sub-
group

The term “blind descent” [BeB] refers to the fact that we shall keep de-
scending along a subnormal chain without ever being able to verify progress.
Algorithm Perm represents one step of the blind descent.
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Note that the permutation representation obtained if item (a) is produced
has degree ≤ mc for some constant c.

Recall that by G(∞) we denote the stable derivative of G (cf. 3.4). The
following algorithm performs the “blind descent.”

Algorithm Construct Semisimple(G)

Initialize: H := G
repeat n times

H := H(∞)

Perm(H,n/5)
if nontrivial normal subgroup found then

H := such a normal subgroup
else (faithful permutation representation of H found)

construct minimal subnormal subgroup of H, exit
end
return H

In the “else” branch we use Luks’s composition chain algorithm for
permutation groups [Lu87] (as improved by Beals–Seress [BeS]). We then
exit the “repeat” loop and return the minimal subnormal subgroup found.

Claim 7.1 Assume G is a black-box group satisfying Sol(G) = 1 and G 6= 1.
Then with large probability, the output of Algorithm Construct Semisimple(G)
is a nontrivial semisimple subnormal subgroup of G.

Proof. Assume for a that the Perm subroutine does not make any errors
throughout the execution of the algorithm.

It is then clear that throughout the process, H is subnormal in G. More-
over H 6= 1 because G has no solvable subnormal subgroups. Let now H be
the output. We need to prove that H is semisimple.

If the “else” branch was invoked at any time then H is in fact simple.
So we may assume this did not occur.

Since no subgroup chain of G is longer than log |G| ≤ n, H is stable under
the loop of the algorithm. Therefore H is perfect and H has no nontrivial
permutation representation of degree ≤ n.

Let N = T1 × . . . × Tk be the socle of G and let ϕ : G → Σk be the
permutation representation defined by the conjugation action of G on the set
{T1, . . . , Tk}. Observe that H ≤ ker(ϕ) since otherwise H had a nontrivial
permutation representation of degree ≤ k < n/5. So H ≤ M := Aut(T1)×
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· · · ×Aut(Tk). But M (∞) = N ; therefore H ≤ N . Any subnormal subgroup
of N is normal in N and is of the form

∏
i∈I Ti for some I ⊆ {1, . . . , k};

therefore H is semisimple.
Our algorithm may err only if Perm errs; therefore the probability of

error is at most nε where ε is the error probability of the Perm runs. We
have to choose ε < 1/n2, say, which is accomplished at a cost of O(log n)-fold
repetition.

Now in order to construct a semisimple normal subgroup of G, take the
normal closure of H.

7.2 Complementing a semisimple direct factor

Next we consider the situation that G = N × M where G is a black-box
group and N is a semisimple normal subgroup of G. We continue to assume
Sol(G) = 1. Moreover, we assume that G and N are given (but M is not).
We wish to find a nontrivial element of M or else decide that M = 1.

Using the algorithms of the preceding section, we may assume that we
are given the decomposition N = T1 × · · · × Tk where the Ti are simple.

Algorithm Discover Complement(G, N, ν)

Initialize: J := G
for i = 1 to k do

if [J, Ti] 6= 1 then
J := Construct Complement(J, Ti, ν)
J := 〈JG〉

end
return J

Claim 7.2 If G = N ×M where N = T1 × · · · × Tk, the Ti are simple, and
Sol(G) = 1, then Algorithm Discover Complement(G, N, ν) returns a
subgroup J / M . If M 6= 1 then J 6= 1 with probability ≥ 1 − ε assuming
ν ≥ c2

√
n log(1/ε) where c2 is the same explicit constant as in Claim 5.3.

Proof. First we observe that if N is semisimple and M is an arbitrary group
then any normal subgroup of N ×M is of the form K ×L where K /N and
L / M . Therefore J as well as the groups H arising in the inner (repeat)
loop of Construct Complement have the form K × L throughout the
algorithm.

We claim that with high probability, L 6= 1 throughout the algorithm.
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The reasoning is analogous to the proof of Claim 5.4. Consider round
i of the for-loop, and within it, round j of the repeat-loop of the algo-
rithm Construct Complement(J, Ti, ν). Let Hi,j = Ki,j × Li,j denote
the group H of Algorithm Construct Complement(Ji, Ti, ν) at the end
of this round.

We say that component i is successful in round (i, j) if Ti ∩Ki,j = 1 and
Li,j 6= 1.

Let us assume that Li,j−1 6= 1. This time we choose a random element
(x, y) ∈ Ki,j−1 × Li,j−1 by selecting y ∈ Li,j−1 first. The probability that
y 6= 1 is at least 59/60. Let, then, r be a prime dividing the order of y. Let
x = (g1, . . . , gk). Now the probability that the order of gi is not divisible by r
is ≥ δi. If this is the case, component i is successful in this round. Therefore
the probability that component i remains unsuccessful through ν rounds is
bounded by the left-hand side of equation (7). Therefore the probability that
at least one component remains unsuccessful during the entire algorithm is
bounded by the left-hand side of equation (8). The result follows as before.

7.3 Extending a semisimple normal subgroup

Suppose now that we have a black-box group G satisfying Sol(G) = 1 and
a semisimple normal subgroup N . We want either to increase N or decide
that N = Soc(G) (and therefore no increase is possible).

Let N = T1 × · · · × Tk where the Ti are simple. Let ϕ : G → Σk

be the usual permutation representation on the set of simple factors. Let
K = ker(ϕ) and let L = K(∞). Note that K can be constructed in Monte
Carlo polynomial time using the sifting technique for permutation groups
[Si71, Si78, FuHL] and L is constructed in [BaCFLS].

Claim 7.3 Soc(G) ≤ L and L = N ×M for some M / G.

Proof. Clearly, Soc(G) ≤ K. Moreover, the image of K/N in Aut(N)/N
under the conjugation action is ≤ Out(T1) × · · · × Out(Tk); the right hand
side being solvable, the image of L is trivial. Therefore L ≤ N · CG(N) =
N × CG(N). Any normal subgroup L ≥ N of a group of the form N × T ,
N semisimple, has the form N ×M .

Next we apply Algorithm Discover Complement(L,N, ν). Assuming
N 6= Soc(G) and therefore M 6= 1, by Claim 7.3 we obtain a nontrivial
element u ∈ M . Let H = 〈uG〉. Construct a nontrivial semisimple G-
normal subgroup T in H; replace N by N × T . Repeat ≤ n times to obtain
Soc(G).
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8 How to do without prime factorization

8.1 The complexity of determining the order of elements

Proposition 8.1 Without any knowledge about our black-box group other
than its encoding length n, the determination of the order of an element may
require exponential Monte Carlo time.

Proof. Let p be a random prime number between 1 and 2n and assume
G = 〈g〉 is cyclic of order p, (p is unknown to us). Suppose our polynomial-
time Monte Carlo algorithm makes t steps, including ≤ t queries regarding
whether an element so far constructed is the identity. All such questions will
be of the form “gj = 1?” where |j| ≤ 2t. For j = 0 the answer of course is
“yes,” but the probability that p divides any other j that arises is less than
ν(j)/π(2n) where ν(j) = O(log |j|/ log log |j|) = O(t/ log t) is the number of
distinct prime divisors of j and π(2n) ∼ 2n/(n ln 2) is the number of primes
≤ 2n. Therefore the probability that a query with p|j 6= 0 will ever be asked
is < c(t/ log t)/(2n/n). For this probability to be non-negligible, t must be
exponentially large.

On the other hand, the assumption that P is known is unpleasant since
for linear groups it assumes factoring integers, a problem generally believed
not to be solvable in polynomial time [Ad]. Even if G ≤ GL(1, p), we need to
factor p−1 (p prime), and this task alone is equivalent to factoring arbitrary
integers, as seen from the following result.

Theorem 8.2 (E. Bach, J. Shallit) Factoring any integer can be reduced,
in Monte Carlo polynomial time, to factoring integers of the form p − 1 (p
prime) into their prime factors, assuming the Extended Riemann Hypothesis
(ERH).

Proof. Suppose we wish to factor the n-digit integer N into prime factors.
Linnik’s celebrated theorem asserts that there exists a prime p ≡ 1 (mod N)
such that p < N c. Bach and Shallit show that such a prime p can be found
in Monte Carlo polynomial time, assuming ERH [BacS, p. 241, Ex. 30].
Now factoring p− 1 into its prime factors will split N .

We used the primes to determine the order of elements. We are unable to
prove that determining the order elements of GL(d, q) accessible to a Monte
Carlo polynomial-time algorithm does actually require factoring integers of
the form pi − 1. But if we broaden our scope and consider linear groups
over the rings Z/NZ, then factoring integers in fact becomes equivalent to
finding the order of elements in such a group. Indeed, even determining the
order of 1× 1 invertible matrices over Z/NZ is as hard as factoring N :
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Proposition 8.3 (G. L. Miller [Mi]) Factoring the composite integer N
is reducible in Monte Carlo polynomial time to determining the order mod N
of random integers k, 1 ≤ k ≤ N , g.c.d.(k, N) = 1.

This fact is the starting point of Peter Shor’s polynomial-time algorithm
for factoring integers on quantum-mechanical Turing-machines. Shor gives a
nice explanation of Miller’s result and provides additional background and
literature on factoring [Sh, p. 1498].

These observations suggest that it is not possible to determine the or-
der of elements of matrix groups in polynomial time. Nor is it necessary,
however, at least for the class of black-box groups of greatest interest to us:
“black-box groups of a known characteristic p.”

8.2 Black-box groups of characteristic p

We say that G is a black-box group of characteristic p if G is a black-box
group of some encoding length n and G is a section (quotient of a subgroup)
of GL(d, p) where4 d = bn/ log pc. When we say that such a group G is
given, we tacitly assume that p is known.

Proposition 8.4 For q a power of the prime p, the subgroups of GL(f, q)
as well as their quotients are black-box groups of characteristic p as long as
their elements are encoded as matrices over Fq or over a subfield of Fq.

Proof. If q = pk then GL(f, q) ≤ GL(fk, p) and therefore |G| divides
|GL(fk, p)|. Moreover, n ≥ f2 log q = f2k log p ≥ fk log p and therefore
fk ≤ d.

Remark 8.5 Note that any black-box group G becomes a black-box group
of characteristic p (for any p) if we pad the encoding with a sufficiently long
string of dummy symbols. However, for the purposes of polynomial-time
algorithms, “padding” is limited to increasing the encoding length polyno-
mially. In particular, the fact that G is a Lie-type simple group of character-
istic p does not exclude the possibility of G being represented as a black-box
group of characteristic r 6= p. However, in this case we have powerful tools
to deals with G, as the following result shows.

Theorem 8.6 Let G be a black-box group of characteristic r and suppose
G is isomorphic to a simple group of Lie type of characteristic p 6= r. Then
we can find a faithful permutation representation of G in polynomial time.

4Throughout this paper, “log” refers to base 2 logarithms.
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This result then implies that we can learn virtually everything about G
in polynomial time: by a theorem of Kantor [Ka], we can find the standard
name of G and its representation in its projective action on the natural
module.
Proof. By the Landazuri–Seitz theorem (Theorem 4.1), G has a permuta-
tion representation of polynomially bounded degree, and therefore by The-
orem 6.1 a faithful permutation representation of G can be computed in
Monte Carlo polynomial time.

8.3 More statistical group theory

We require a more complete version of Theorem 4.2, our main statistical
tool about simple groups. For a set S ⊆ G we write SG =

⋃
g∈G Sg (the

union of conjugates).

Theorem 8.7 ([BaPS]) Let G be a finite simple group of Lie type. Then
G has two cyclic maximal tori T1, T2 of relatively prime orders such that for
each i, the set TG

i has non-negligible density: |TG
i |/|G| ≥ c/d, where d is

the dimension of the linear space on which G acts projectively and c > 0 is
a constant.

(For classical groups, the result holds with c = 1/2.) This result clearly
implies Theorem 4.2 for simple groups of Lie type: if r divides |T1| then all
elements of TG

2 are r-regular; otherwise all elements of TG
1 are r-regular.

The orders of the maximal tori in question are listed in [BaPS]. For a
classical group Xd(q) (X ∈ {PSL, PSp, PSU, PΩ±}; for the unitary groups,
the field has order q2) the orders of these tori are of the form (k1k2)/(k3k4),
where k1 = qj ± 1 for j ≤ d, k2 = 1 or k2 = q ± 1, k3 = 1 or k3 = q ± 1, and
k4|d. For exceptional groups Y (q) we have numbers of similar form with j ≤
7, k3 ≤ 3, and k4 = 1; moreover, Φj(qs) for s ≤ 3 and j = 6, 3 (where Φj(x)
denotes the j-th cyclotomic polynomial), furthermore, Φj(q) for j = 30, 15
(these arise for E8(q)), and finally the following integer factors of Φj(qs)
which we shall refer to as semicyclotomic factors of qj − 1: q ±

√
2q + 1

(factors of Φ4(q) for q = 22t+1), q±
√

3q +1 (factors of Φ6(q) for q = 32t+1),
and q2 + q + 1±

√
2q(q + 1) (factors of Φ6(q2) for q = 22t+1).

8.4 Pseudo-order of elements in black-box groups of charac-
teristic p

Let P be a set of pairwise relatively prime integers. Assume that m =∏
p∈P pkp is a multiple of |G|. (We may take kp = bn/ log pc where n is the
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encoding length of G.) Let us call the members of P pretend-primes. Let
us define the pseudo-order of g ∈ G with respect to the set P of pretend-
primes the smallest positive integer ` such that g` = 1 and ` is a product of
pretend-primes. Let |g|P denote this quantity. Note that |g|P is computed
in polynomial time by Algorithm Order(G,P, g) (Section 3.6).

Celler and Leedham-Green [CeL] suggest that factoring the order of
GL(d, p) into easily computed pretend-primes will suffice in lieu of actual
prime factorization for most applications. We turn this idea into a rigorous
statement regarding the algorithms of this paper. Our pretend-primes will
have to go slightly beyond the small primes and the cyclotomic factors Φj(p)
of the integers pi − 1 =

∏
j|i Φj(p) recommended by [CeL].

Let L be a set of positive integers. We define the relatively prime refine-
ment of L as the smallest set P of pairwise relatively prime integers such
that each member of L is a product of members of P; and the sum of the
elements of P should be maximal subject to this condition. We shall see
that this set is unique and denote it by P(L).

For a set M of positive integers and an integer m, let us write M ` m
if m is either the g.c.d. or the quotient of two members of M. We say that
M is closed under ` if M ` m implies m ∈ M. Let M̄ denote the closure
of M (the smallest closed set containing M).

Claim 8.8 Let L be a set of positive integers. Then P(L) is the set of
minimal elements with respect to divisibility of L̄ \ {1}.

(An element m of a set N of positive integers is minimal with respect to
divisibility if no other element of N divides m.) The Claim includes the
statement that P(L) is unique. We leave the easy proof to the reader.

The following algorithm is folklore; it constructs P(L).

Algorithm Refine(L)

Initialize: P := L
while not all pairs in P are relatively prime do

pick a, b ∈ P, a 6= b such that f :=g.c.d.(a, b) 6= 1
delete a, b from P, add f, a/f, b/f to P

end
return P

We note that each round reduces the product of the elements of P by a
factor of d ≥ 2; therefore the process terminates in ≤

∑
m∈L log m rounds.

This is less than the length of the input (total bit-length of the integers
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m ∈ L), so the algorithm runs in polynomial time. We leave the easy proof
of correctness to the reader.

Remark 8.9 The “factor refinement problem” asks not only to produce the
set P(L) but also to express the product

∏
m∈L as a product of elements

of P(L). The Refine algorithm can easily be adapted for this purpose.
The “factor refinement problem,” and specifically the idea of the Refine
algorithm, have a long history, going back to Stieltjes (1890). Bach, Driscoll,
and Shallit [BacDS] give a detailed account of early as well as recent work
and a multitude of applications. They also present a definitive result on the
complexity of the problem which we state.

Let k be the total bit-length of the integers in L. Then a naive implemen-
tation of the Refine procedure runs in O(k3) time (bit-operations). Note
that the above description of Refine does not specify how to keep track of
which pairs remain not relatively prime and in what order to process them.
By appropriately organizing this process, [BacDS] reduces the running time
to O(k2).

Now here comes our recipe for creating the set of pretend-primes
for our algorithms.

Given that our groups are sections of GL(d, p) (quotients of subgroups),
first we create a list L(d, p) of positive integers as follows.

Include in L(d, p) all primes ≤ 47 and the primes 59, 67, 71 (these are
the primes occurring in sporadic simple groups). Include all primes ≤ dc1

where c1 is the constant in Theorem 4.1. (This takes care of many things,
see below.) Further, include all cyclotomic factors Φi(pj) for ij ≤ d.

Finally, include the following semicyclotomic factors: If p = 2, include
22t+1 ± 2t+1 + 1, 0 ≤ t ≤ (d− 4)/8, and 24t+2 + 22t+1 + 1± 2t+1(22t+1 + 1),
0 ≤ t ≤ (d− 12)/24. If p = 3, include 32t+1 ± 3t+1 + 1, 0 ≤ t ≤ (d− 6)/12.
This completes the list L(d, p).

Let now P(d, p) denote the relatively prime refinement of L(d, p). This
will be our set of pretend-primes.

Corollary 8.10 Let S be a nonabelian simple section of GL(d, p). Then for
any prime r, at least a c/d fraction of the elements of g ∈ S has pseudo-order
|g|P relatively prime to r with respect to the set P = P(d, p) of pretend-
primes.

Proof. If S is sporadic then π(S) ⊆ P. The same holds if S is alternating
of degree k since k ≤ d + 1, and also if S is of Lie type of characteristic
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s 6= p since in that case the natural module for S has order st for some t
and st ≤ dc1 by Theorem 4.1. If S is Lie type of characteristic p then let
T1 and T2 be the maximal tori of S discussed in Theorem 8.7. But then,
|Ti| is a product of the cyclotomic and semicyclotomic factors included in
L(d, p). (We note in this connection that Φi(xj) =

∏
h:h|j,gcd(h,t)=1 Φtj/h(x).)

Therefore if the prime r does not divide |Ti| (which is true for at least one of
T1 and T2) then the pseudo-order of elements of TG

i with respect to P(d, p)
is not divisible by r either (since the pseudo-order will divide |Ti|).

It follows that our algorithms work correctly using the set P(d, p) of
pseudoprimes.

The following observation speeds up the refinement algorithm for the
case L = L(d, p).

Proposition 8.11 Let r be a prime, q an arbitrary integer, i > j positive
integers. If r|Φi(q) and r|Φj(q) then r|i.

Proof. The conditions imply that r divides g.c.d.(qi − 1, qj − 1) = qk − 1,
where k =g.c.d.(i, j). Now qi − 1 is divisible by Φi(q)(qk − 1), therefore q
is a multiple root of the polynomial xi − 1 over Fr. This implies that q is a
root of the derivative, i. e., r|iqi−1, and therefore r|i.

As a consequence, the following version of the Refine procedure will
succeed. For a prime r, the r-free part of an integer a 6= 1 is the integer
a′ = a/rk where rk is the largest power of r which divides a.

Algorithm Simple-Refine(d, p)

Initialize: P := L(d, p)
for all primes r ≤ d do

for all a ∈ P do
replace a by its r-free part

end
end
return P

Claim 8.12 Algorithm Simple-Refine(d, p) returns the set P(d, p).

Indeed, this is immediate from Proposition 8.11 and the fact that all
primes ≤ d are included in L(d, p), with the additional observation that
the pairs of semicyclotomic factors included in L(d, p) are trivially relatively
prime.
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Remark 8.13 Given the set L(d, p), Algorithm Simple-Refine(d, p) runs
in O(d3 log p) bit operations. Note that the total number of bits of the input
L(d, p) is Θ(d2 log p).

Remark 8.14 P. P. Pálfy kindly communicated the following result to us.
Under the conditions of Proposition 8.11, the g.c.d. of Φi(q) and Φj(q) is
either 1 or a prime number r; in the latter case, i = srk and j = sr` for
some nonnegative integers s, k, ` where s|r − 1.

9 Statistical recognition of black box simple groups:
a project

In this section we briefly review major progress on the following question.

Problem 9.1 Given a black-box simple group G of characteristic p, what
can we say about G in Monte Carlo polynomial time?

This is a promise problem: we expect a correct answer only if G is
indeed simple, but the fact of simplicity need not be verified. (See the
Problem 10.2.)

9.1 Name-recognition

The simplest type of answer is name-recognition: we wish to tell which
simple group G is isomorphic to (print the standard name of G). It now
seems reasonable to expect that the following conjecture holds:

Conjecture 9.2 Let G be a simple group of Lie type of characteristic p
given as a black-box group. Assume p is known. Then one can compute the
standard name of G in Monte Carlo polynomial time.

Combined with Theorem 1.2 this conjecture implies that we can list the
names of all nonabelian composition factors (with multiplicity) of a black-
box group of given characteristic in Monte Carlo polynomial time. (If G is
given as a black-box group of the wrong characteristic, then we can deal
with G in a very strong sense, see Theorem 8.6.)

Conjecture 9.2 is addressed in [BaP]. In 1955, Artin introduced four
basic invariants of simple groups of Lie type to distinguish simple groups
by their orders [Ar]. For an update to include the classes discovered after
Artin’s paper, see [KiLST]. Two of Artin’s invariants, called α and β in [Ar],
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turn out to be computable in Monte Carlo polynomial time for black-box
simple groups of a given characteristic. (The other two do not seem to, since
their computation would depend on finding p-singular elements in a group
of Lie type of characteristic p, an elusive quest.) However, it turns out that
α and β already “almost determine” G in the sense that at most 7 groups of
Lie type of characteristic p share the same pair (α, β). Results of Niemeyer
and Praeger [NiP98] on ppd-elements in classical groups and their extension
to exceptional groups [BaPS] imply further breakup of these classes.

While the determination of the Artin invariants depends only on sam-
pling the orders of the elements of the given black-box group, such a simple-
minded approach will not separate the two infinite classes of simple groups
of equal orders: PSp(2k, q) and PΩ(2k + 1, q), q odd. However, a break-
through by Altseimer and Borovik eliminated this obstacle: these two classes
are distinguishable in Monte Carlo polynomial time [AlB]. This result gives
reason for optimism regarding the completion of the proof of Conjecture 9.2.

9.2 Constructive recognition

A much more ambitious goal is strong constructive recognition: given a black-
box simple group T , find an isomorphism to a “natural representation,” with
the isomorphism efficiently computable in both directions. (The “natural
representation” of Lie-type simple groups is its projective action on the
natural module. The natural representation of the alternating groups is
self-explanatory. For the purposes of the polynomial-time theory we are not
concerned about sporadic groups.)

Weak constructive recognition requires finding a presentation in terms of
generators and relations.

We note that strong constructive recognition implies weak constructive
recognition, assuming the Short Presentation Conjecture mentioned in Sec-
tion 2.2. Therefore this implication is known to hold for all finite simple
groups except for the rank-1 twisted types [BaGKLP].

Sims’s “strong generators” yield weak constructive recognition of per-
mutation groups in polynomial time. This observation, combined with The-
orem 6.4, yields weak recognition of simple black-box groups in Monte Carlo
time polynomial in n + m where n is the input length and m is the smallest
degree of a permutation representation. For classical groups, Kantor [Ka]
turns the permutation representation into “strong constructive recognition”
in polynomial time.

A breakthrough in strong constructive recognition of black-box simple
groups came with the recent paper by Cooperman, Finkelstein, and Lin-
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ton [CoFL95] who solved this problem in Monte Carlo polynomial time
for PSL(d, 2). Following work by Prabhav Morje on nearly linear time
algorithms for Sylow subgroups in permutation groups [Mo], the result
of [CoFL95] was extended by Bratus, Cooperman, Finkelstein, and Lin-
ton [BrCFL] to PSL(d, q) for tiny q (see below) and finally in a monumental
paper by Kantor and Seress [KaS] to all classical groups over tiny fields.

Following accepted terminology in the theory of computing, we say that
an input parameter q is tiny if it is input in unary (rather than in binary),
i. e., it contributes q rather than log q to the length of the input. So a
polynomial-time algorithm for a d× d matrix group over a tiny field runs in
time O((dq)c rather than O((d log q)c, as required if the field is not tiny (q
is the order of the field).

(We note that over tiny fields, strong recognition automatically implies
weak recognition since the Steinberg presentations [St] are of polynomial
length as a function of dq (but not of d log q).)

We mention that weak constructive recognition is provably hard (expo-
nential time) for elementary abelian black-box groups [BaSz].

10 Open problems

We conclude with a list of open problems. All these problems represent
bottlenecks in the polynomial-time attempts to obtain a more complete
description of the normal structure of a black-box group G. For a further
explanation of the connections we refer to [BaB2].

Problem 10.1 (The p-singular element problem) Given a black-box group
known to be isomorphic to PSL(2, pk) (or any other simple group of Lie
type of characteristic p), find an element of order p.

The difficulty is that when pk is large then p-singular elements (elements
of order divisible by p) become rare in these groups, so simple sampling is
unlikely to find a p-singular element. This problem may hold the key to the
constructive recognition (strong or weak) of PSL(2, pk) (and other simple
groups), the most significant open problem in the area.

Problem 10.2 (The p-core problem) Given a black-box group G of charac-
teristic p, decide (in Monte Carlo polynomial time) whether or not Op(G) =
1.

This problem is open even in the case when G = G′, Op(G) is known
to be an elementary abelian minimal normal subgroup, and G/Op(G) =
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PSL(2, q). A Monte Carlo polynomial-time solution exists for q = p (prime),
but the question is open when q = p2 [BabS]. Again, a solution to Prob-
lem 10.1 would solve this one. This problem indicates the difficulty of recog-
nizing simplicity of a (nonabelian) black-box group. (For abelian black-box
groups, deciding simplicity requires exponential time [BaSz], but for non-
abelian black-box groups the problem could be easier.)

In contrast to this (affine) case, the case of central extensions is easy: if
G is a black-box group known to satisfy G = G′ and G/Z(G) is known to
be simple then Z(G) can be found in Monte Carlo polynomial time. (This
is yet another simple algorithmic consequence of Theorem 4.2, cf. [BaB2].)

We note that for matrix groups G ≤ GL(d, p) (p prime), the quotient
G/Op(G)is itself a subgroup of GL(d, p) and can be found in deterministic
polynomial time. Indeed a composition chain of the G-module Fd

p can be
constructed in polynomial time via Rónyai’s algorithm for the radical of an
algebra [Ró]. We restrict the G-action to the direct sum of the quotients of
the composition chain. Op(G) is the kernel of this action. (A practical imple-
mentation would use the Holt–Rees generalization of the Meataxe [HoR94],
avaliable in MAGMA [BoC].)

The preceding problem considered the key question in the case when
an abelian group was sitting “under” a nonabelian simple group. The next
problem concerns the converse: an abelian (or solvable) group on the “top.”

Problem 10.3 (Outer automorphism problem) Given a black-box group of
characteristic p known to satisfy T ≤ G ≤ AutT , recognize T within G in
Monte Carlo polynomial time. (I. e., we ask for membership testing in T for
any g ∈ G.)
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