1. Review the fact that the volume of the parallelopiped spanned by \(n \) vectors in \(\mathbb{R}^n \) is the absolute value of the determinant formed by those vectors.

2. Let \(s_n \) denote the \((n\text{-dimensional})\) volume of a simplex determined by \(n \) linearly independent vectors in \(\mathbb{R}^n \). Let \(p_n \) be the \((n\text{-dimensional})\) volume of the parallelopiped generated by the same \(n \) vectors. Show that

\[
\frac{s_n}{p_n} = \frac{1}{n!}
\]

3. Challenge Problem: \(n \)-dimensional Pythagorean Theorem for hyperplanes

For \(1 \leq i \leq n \), let \(\pi : \mathbb{R}^n \to \mathbb{R}^n \) denote the projection to the \(i \)-th coordinate hyperplane (this projection simply sets the \(i \)-th coordinate of every point to zero).

Let \(A \) be a hyperplane in \(\mathbb{R}^n \) and \(F \subset A \) be a measurable set (relative to the Lebesgue measure on \(A \)). Let \(F_i = \pi_i(F) \) be the \(i \)-th projection of \(F \). Let \(V \) denote the \((n - 1)\)-dimensional volume of \(F \) (relative to the subspace \(A \)); and let \(V_i \) denote the \(n - 1 \)-dimensional volume of \(F_i \). Prove:

\[
V^2 = \sum_{i=1}^{n} V_i^2.
\]

4. Challenge Problem: \(n \)-dimensional Pythagorean Theorem for \(k \)-dimensional subspaces

For \(T \subseteq [n] \), let \(\pi_T : \mathbb{R}^n \to \mathbb{R}^n \) denote the projection to the coordinate subspace spanned by the standard basis vectors \(\{e_i : i \in T\} \), i.e., \(\pi_T \) sets all coordinates outside \(T \) to zero.

Let \(A \) be a \(k \)-dimensional subspace of \(\mathbb{R}^n \). Let \(F \subset A \) be a measurable set (relative to the Lebesgue measure on \(A \)). Let \(V \) denote the \(k \)-dimensional volume of \(F \). For \(T \subseteq [n], |T| = k \), let \(V_T \) denote the \(k \)-dimensional measure of \(\pi_T(F) \). Prove:

\[
V^2 = \sum_T V_T^2,
\]

where the summation extends over the \(\binom{n}{k} \) \(k \)-subsets \(T \subseteq [n] \).
5. Prove the following:

(a) If \(a_n \sim b_n \) and \(a_n > 1.001 \) then \(\ln(a_n) \sim \ln(b_n) \).
(b) If \(a_n = \Theta(b_n) \) and \(a_n \to \infty \) then \(\ln(a_n) \sim \ln(b_n) \).

6. Let \(p_n \) denote the \(n \)th prime number. Show that the relation \(p_n \sim n \ln(n) \) implies the Prime Number Theorem.

7. In this exercise, do not use Stirling’s formula. For \(1 \leq k \leq n \), prove:

(a) \(\binom{n}{k}^k \leq \binom{n}{k} < \left(\frac{en}{k} \right)^k \).
(b) \(\binom{n}{k} + \binom{n}{k-1} + \ldots + \binom{n}{0} < \left(\frac{en}{k} \right)^k \).

8. Let \(0 < \alpha < 1 \). The entropy function \(H(\alpha) \) is defined as

\[
H(\alpha) = -\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha).
\]

Prove:

(a) \(0 < H(\alpha) \leq 1 \);
(b) \(H(\alpha) = 1 \iff \alpha = 1/2 \);
(c) \(\lim_{\alpha \to 0} H(\alpha) = \lim_{\alpha \to 1} H(\alpha) = 0 \).
(d) \(H(\alpha) = H(1 - \alpha) \).

9. **Asymptotics of binomial coefficients** Prove: if \(\{k_n\} \) is a sequence of positive integers such that \(\lim_{n \to \infty} k_n / n = \alpha \) where \(0 < \alpha < 1 \) then

\[
\log_2 \left(\frac{n}{k_n} \right) \sim H(\alpha).
\]

In other words,

\[
\binom{n}{k_n} = 2^{H(\alpha)n(1+o(1))}.
\]

Hint: Stirling’s formula.

10. **Chromatic number and independence number.** Let \(G \) be a graph on \(n \) vertices, and let \(\chi(G) \) and \(\alpha(G) \) denote the chromatic number of \(G \) and the size of a maximal independent set of \(G \), respectively. (An independent set is a subset of the vertex set which includes no edges.) Show that \(\chi(G) \cdot \alpha(G) \geq n \).

11. * (Eventown) Given a set \(X \) with \(n \) elements, and a family \(\mathcal{F} \) of subsets of \(X \) such that, given any two elements \(A, B \) (not necessarily different) of \(\mathcal{F} \), \(A \cap B \) contains an even number of elements, show that there are at most \(2^{\lceil \frac{n}{2} \rceil} \) elements in \(\mathcal{F} \).