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1 Basic Linear Algebra

Exercise 1.1 Let V and W be linear subspaces of F", where I is a field,
dimV =k, dim W = ¢. Show that dim(V NW) >n — (k + ¢).

Exercise 1.2 Let A be an n x n matrix over the field F and x € F \ {0}.
Then (3x)(Ax = 0) < det(A) = 0, where det(A) is the determinant of A.

Definition 1.3 Let A be an n X n matrix over the field F and x € F" \ {0}.
We say that x is an eigenvector for A with eigenvalue \ if

Ax = \x.

Exercise 1.4 Show that if xy,...,x, € F" are eigenvectors with distinct
eigenvalues then they are linearly independent.

Definition 1.5 The characteristic polynomial of the n x n matrix A is
fa(z) :=det(zl — A).

Exercise 1.6 ) is an eigenvalue of A if and only if it is a root of fa(x), i.e.

fa(A) = 0.

Exercise 1.7 Let fa(z) = 2" +a, 12" ' +...+ay (why is it monic?). Show
that ap = (—1)" det(A) and a,,_1 = — tr(A), where the trace of A is defined
as tr(A) = Y"1 | a; (sum of the diagonal elements).
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Definition 1.8 If ) is an eigenvalue of A then the geometric multiplicity
of X is dimker(A — AI) (the number of linearly independent eigenvectors for
eigenvalue \). The algebraic multiplicity of ) is its multiplicity as a root

of fa(z).

CONVENTION. By the multiplicity of the eigenvalue (without adjective)
we always mean the algebraic multiplicity.

Exercise 1.9 The algebraic multiplicity of A is greater than or equal to its
geometric multiplicity.

Exercise 1.10 If A is an n X n matrix then the algebraic multiplicity of the
eigenvalue \ equals dimker(A — AI)™.

Definition 1.11 The n X n matrices A and B are similar, A ~ B, if there
exists an invertible matrix S s.t. A = S~!BS.

Exercise 1.12 Show that if A and B are similar then fa(z) = fgp(x).

Definition 1.13 An eigenbasis for A is a basis of F" consisting of eigen-
vectors of A.

Definition 1.14 A is diagonalizable if it is similar to a diagonal matrix.
Exercise 1.15 A is diagonalizable if and only if it has an eigenbasis.

Exercise 1.16 If A is an upper triangular matrix then its eigenvalues, with
proper algebraic multiplicity, are its diagonal elements.

Exercise 1.17 Every matrix over C is similar to an upper triangular matrix.
More generally, a matrix over the field I is similar to a triangular matrix if
and only if all roots of f4 belong to F.

Exercise 1.18 Let \j,..., A, be the eigenvalues of the n xn matrix A (listed
with their algebraic multiplicities). Then det(A) =[], \; and tr(A) = >, \;.

Exercise 1.19 Show that ((1) (1)) is not similar to ((1] 1) Verify that their

characteristic polynomials are identical. Show that the second matrix is not
diagonalizable.



Exercise 1.20 Let F = C (or any algebraically closed field). Show that A
is diagonalizable if and only if each eigenvalue of A have same geometric and
algebraic multiplicities.

A1
Exercise 1.21 If A is a diagonal matrix, A = ,and f is a

M)
polynomial then f(A) =

f(n)

Definition 1.22 my(x), the minimal polynomial of A, is the monic poly-
nomial of lowest degree, such that m(A) = 0.

Exercise 1.23 Show that m4(z) exists and degm, < n?.

Exercise 1.24 Show that if f € F[z] is a polynomial then (f(A) = 0) &
(malf).

Theorem 1.25 (Cayley-Hamilton Theorem)
malfa  or, equivalently,  fa(A) =0.
Consequently degm 4 < n.

Exercise 1.26 A proof of the Cayley-Hamilton theorem over C is outlined
in this series of exercises:

1. Prove Cayley-Hamilton for diagonal matrices.
2. Prove the theorem for diagonalizable matrices.

3. Show that if A; is a sequence of matrices, lim; ., A; = A, and f; is a
sequence of polynomials of the same degree, and lim; ., f; = f (coef-
ficientwise convergence) then lim; . fi(A4;) = f(A). In other words,
polynomials of matrices are continuous functions of the matrix entries
and the coefficients of the polynomials.



4. Show that for any matrix A there exists a sequence of diagonalizable
matrices A;, such that lim; .., A; = A. In other words diagonalizable
matrices form a dense subset of the set of all matrices.

(Hint: prove it first for upper triangular matrices.)

5. Complete the proof of Cayley-Hamilton theorem over C.

Exercise 1.27 Complete the proof of the Cayley-Hamilton Theorem (over
any field) by observing that if an identity of (multivariate) polynomials holds
over Z then it holds over any commutative ring with identity.

2 Euclidean Spaces

In this section the field F is either R or C. If a € C, we will denote by a the
complex conjugate of a. Of course, if a € R, then @ = a. Similarly if A is a
matrix then each entry of A is the complex conjugate of the corresponding
entry of A.

Definition 2.1 Let x,y € F". Their (standard) inner product is
(x,y) := Zz = 1"7,y;.
Definition 2.2 If x € F" is a vector, its norm is defined as

Il == /.

Definition 2.3 If A is a matrix, then the adjoint matrix is A* = AT
(conjugate-transpose).

Exercise 2.4 We think of vectors as column matrices. Verify the following:
1. (x,y) =x*y
2. (A*x,y) = (x, Ay)
3. (v, ¥)((Bx,y) = (x,Ay))) & B = A"

Exercise 2.5 (AB)* = B*A*, where A,B are not necessarily square matri-
ces. (What dimensions should they have so that we can multiply them?)



Definition 2.6 We say that a matrix A is self-adjoint if A* = A. A is also
called symmetric if F = R and Hermitian if F = C.

Exercise 2.7 If A= A* then all eigenvalues of A are real.

Exercise 2.8 Show that the characteristic polynomial of a Hermitian matrix
has real coefficients.

Definition 2.9 The quadratic form associated with a self-adjoint matrix
A is a function Q4(x) : F* — F, defined by

QA<X) =x"Ax = Z al-ji’l-:cj.

.3
Definition 2.10 The operator norm of a matrix A is defined as

[A[l = max [ Ax]].

lIx[[=1

Exercise 2.11 Show that ||A|| = /A1(A*A), where A\(A*A) denotes the
largest eigenvalue of A*A. (Note that A*A is self-adjoint. A does not need
to be a square matrix for this exercise.)

Definition 2.12 A self-adjoint matrix A is called positive semidefinite
if (vx € F)(Qa(x) > 0). A is called positive definite if (Vx € F \

{0H)(Qa(x) > 0).

Exercise 2.13 Show that a self-adjoint matrix is positive definite (resp.
semidefinite) if and only if all its eigenvalues are positive (resp. nonnega-
tive).

Exercise 2.14 Show that a self-adjoint matrix A is positive definite if and
only if all of its upper left corner determinants det(aq;), det (Z; Ziz), etc, are
positive.

(Hint: Use the Interlacing Theorem (given in Exercise 2.29 below).)

Definition 2.15 A set of vectors ay, ..., a, is orthonormal if (a;, a;) = 0;;
where 0;; = 1 if ¢ = j and §;; = 0 otherwise.

Definition 2.16 A is a unitary matrix if A*A = I.



Exercise 2.17 Show that if A is unitary and A is an eigenvalue of A then
Al = 1.

Exercise 2.18 Let A be an n x n matrix. Prove that the following are
equivalent:

1. A is unitary;
2. AA* =1;
3. the columns of A form an orthonormal basis of F";

4. the rows of A form an orthonormal basis of F™.
Definition 2.19 The n X n matrix A is normal if AA* = A*A.

Exercise’ 2.20 Show that A is normal if and only if A has an orthonormal
eigenbasis. Equivalently, show that A is normal if and only if there exists a
unitary matrix S such that S*AS is a diagonal matrix. If so, the entries in
the diagonal are the eigenvalues of A.

Exercise 2.21 Show that the n x n matrix A is
1. self-adjoint if and only if A is normal and all its eigenvalues are real;

2. unitary if and only if A is normal and all its eigenvalues have unit
absolute value.

NOTATION: For the rest of this section we use the following notation: F = C
or R; A is a self-adjoint matrix over F. The eigenvalues of A (with multiplic-
ity) are Ay > ... > \,.

Now we will formulate the fundamental

Theorem 2.22 (Spectral Theorem) The eigenvalues of A are real and A
has an orthonormal eigenbasis.

Let ey, ..., e, be an orthonormal eigenbasis for A.

Exercise 2.23 Show that if x = ), z;e;, then

Qu(x) = ZMXZ-P.



Definition 2.24 The Rayleigh quotient is the function R(z) : F*\ {0} —

R defined by o
R(x) = X% _ Qa(x)

xxx])?

Exercise 2.25 Show that

A= ”In”a_Xl R(x).

Exercise 2.26 Show that

Ao = max R(x);
e

A3 = max R(x);
Ixll=1
xJ_el,ez

and so on.
Exercise 2.27 Show that if \; = x*Ax, ||x|| = 1, then Ax = \;x.

Exercise 2.28 (Fischer-Courant Theorem)

A; = max min R(z)
U<Fn gxeU
dim U=i

where the maximum runs over all linear subspaces U < F" of dimension 1.

Exercise 2.29 (Interlacing Theorem) Let A be an n x n self-adjoint ma-
trix. We can construct a new (n — 1) x (n — 1) matrix by removing the ith
row and the ¢th column of A. The resulting matrix B is self-adjoint. Let
A1 > ... > )\, be the eigenvalues of A and p; > ... > p,_1 be the eigenvalues
of B (with multiplicity). Show that \y > py > Ao > o > ... > pp1 > Ay

3 Applications to Graph Theory

There are two important square matrices commonly associated to graphs —
the adjacency matrix of the graph, and the (finite or combinatorial) Lapla-
cian. This allows us to apply the theory of eigenvalues to graphs, and it
turns out that a great deal of information about the graph is carried in the
spectra of these matrices.

For graph theory terminology please refer to “Graph Theory Terminol-
ogy ‘“ handout.



3.1 The Adjacency Matrix

Definition 3.1 Let G = (V, E) be a graph; assume V = [n] = {1,2,...,n}.
The adjacency matrix Ag = (a;;) of G is the n x n (0, 1)-matrix defined
by a;; = 1if {i,j} € E (vertices ¢ and j are adjacent); and a;; = 0 otherwise.
Note that a; = 0.

Exercise 3.2 Show that the (i, j) entry of (Ag)"* gives the number of walks
of length k£ between vertex ¢ and vertex j. Give an interpretation for the
(i,4) entry of (Ag)* and for 377, (Ag)y;.

The adjacency matrix acts on functions on the graph. That is, if f: V —
R is a function on the vertices of the graph (which can also be considered a
column matrix), then

Af(i)= > f(i)
{ij‘}eE

Notice that this action is just matrix multiplication.

Exercise 3.3 Isomorphic graphs have similar adjacency matrices.

This allows us to make the following definitions:

Definition 3.4 « is an eigenvalue of G if it is an eigenvalue of Ag. The
characteristic polynomial of G is the characteristic polynomial of Ag.
The spectrum of G is the ordered set of all eigenvalues of Ag (with multi-
plicities).

As before we will assume that eigenvalues of G' are always ordered k; >

e 2 Ky

Exercise 3.5 Compute the spectrum of each of the following graphs: K,
(the complete graph on n vertices), the star on n vertices (a tree with a
vertex of degree n — 1, denoted K,,_11), Ky, (the complete bipartite graph).

Exercise 3.6 Let G = (V, E) be a graph. Let G; be the graph obtained by
deleting the ith vertex (and the edges incident with it) from G. Show that
eigenvalues of G and G; interlace.

Exercise 3.7 (Vi) (|xi| < k1).



Exercise 3.8 If (G is connected then k1 > ko.
Exercise 3.9 If GG is bipartite , then k,_; = —K;41.

Exercise 3.10 If GG is connected and k; = —k,, than G is bipartite. Thus if
G is connected and not bipartite then (Vi > 1) (|x;| < K1).

Exercise 3.11 k; < maxdegq(7).
Exercise 3.12 x; > @ = L3 degq(i) (average degree).

Exercise 3.13 If G is k-regular, i.e. (Vi)(degs(i) = k), then k1 = k.

Exercise 3.14 If k; = maxdeg(i) and G is connected then G is regular.

Exercise 3.15 If k1 = 1 3" deg(i) then G is regular.

Exercise 3.16 1. Upper bounds on the maximal eigenvalue are heredi-
tary; that is, if H C G is a subgraph, then x1(H) < k1(G).

2. Show that upper bounds on the second eigenvalue ks fail to be hered-
itary in general, but are hereditary in the special case that H is an
induced subgraph.

(Hint: for the first part, consider the spectrum of K. For the second
part, recall the Interlacing Theorem.)

Exercise 3.17 If diam(G) = d, then the number of distinct eigenvalues of
Aq 1s at least d + 1.

(Hint: Prove that under the diameter hypothesis, I, A, ..., A% are linearly
independent. To show this, recall the significance of the (i,7) entry of A*
from Exercise 3.2.)

3.2 The Laplacian and Expansion of a Graph
Definition 3.18 We define the Laplacian of the graph G to be
Ag = D¢g - Ag

where Ag is the adjacency matrix and Dg is a diagonal matrix, Dg(i,7) =
degq (i)



Exercise 3.19 Verify that for x = (xy,...,x,)7,

X"Agx = Z |z — 2]
{i,j}€E
Exercise 3.20 Show that Ag is positive semidefinite.

However, Ag is not positive definite:
Exercise 3.21 Check that Agj = 0, where j = (1,...,1)T.
Exercise 3.22 Show that if GG is connected, then 0 is a simple eigenvalue.

Exercise 3.23 Prove that the multiplicity of 0 as an eigenvalue of Ag is
equal to the number of connected components of G.

Therefore if 0 = A; < Ay < ... < )\, are eigenvalues of Ag then Ay = 0 if
and only if G is disconnected.

Definition 3.24 (Fiedler) ), is the algebraic connectivity of G.

Exercise 3.25 If G is a k-regular graph (every vertex has degree k) and
k =k > ... > K, are eigenvalues of Ag and 0 = \; < ... < )\, are
eigenvalues of Ag the \; + k; = k. In particular, Ay = K1 — Ko. Ag is also
referred to as the eigenvalue gap or spectral gap.

Definition 3.26 If A C G we denote by 6(A) the number of edges between A
and A = V' \ A. The isoperimetric ratio for A is %. The isoperimetric

constant of G is

_ o 0(4)
= Igl;g)l Al
[A|I<3

The next result shows the important fact that if Ay is large then G is
“highly expanding”.

Exercise* 3.27 Ay <2 %.

Later we will state a companion result which shows that in some sense if
A2 is small then G has a small isoperimetric constant.
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