
Linear algebra and applications to graphs
Part 1

Written up by Mikhail Belkin and Moon Duchin
Instructor: Laszlo Babai

June 17, 2001

1 Basic Linear Algebra

Exercise 1.1 Let V and W be linear subspaces of Fn, where F is a field,
dimV = k, dimW = `. Show that dim(V ∩W ) ≥ n− (k + `).

Exercise 1.2 Let A be an n × n matrix over the field F and x ∈ F \ {0}.
Then (∃x)(Ax = 0)⇔ det(A) = 0, where det(A) is the determinant of A.

Definition 1.3 Let A be an n× n matrix over the field F and x ∈ Fn \ {0}.
We say that x is an eigenvector for A with eigenvalue λ if

Ax = λx.

Exercise 1.4 Show that if x1, . . . ,xn ∈ Fn are eigenvectors with distinct
eigenvalues then they are linearly independent.

Definition 1.5 The characteristic polynomial of the n× n matrix A is

fA(x) := det(xI − A).

Exercise 1.6 λ is an eigenvalue of A if and only if it is a root of fA(x), i.e.
fA(λ) = 0.

Exercise 1.7 Let fA(x) = xn+an−1x
n−1 + . . .+a0 (why is it monic?). Show

that a0 = (−1)n det(A) and an−1 = − tr(A), where the trace of A is defined
as tr(A) =

∑n
i=1 aii (sum of the diagonal elements).
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Definition 1.8 If λ is an eigenvalue of A then the geometric multiplicity
of λ is dim ker(A− λI) (the number of linearly independent eigenvectors for
eigenvalue λ). The algebraic multiplicity of λ is its multiplicity as a root
of fA(x).

CONVENTION. By the multiplicity of the eigenvalue (without adjective)
we always mean the algebraic multiplicity.

Exercise 1.9 The algebraic multiplicity of λ is greater than or equal to its
geometric multiplicity.

Exercise 1.10 If A is an n×n matrix then the algebraic multiplicity of the
eigenvalue λ equals dim ker(A− λI)n.

Definition 1.11 The n× n matrices A and B are similar, A ∼ B, if there
exists an invertible matrix S s.t. A = S−1BS.

Exercise 1.12 Show that if A and B are similar then fA(x) = fB(x).

Definition 1.13 An eigenbasis for A is a basis of Fn consisting of eigen-
vectors of A.

Definition 1.14 A is diagonalizable if it is similar to a diagonal matrix.

Exercise 1.15 A is diagonalizable if and only if it has an eigenbasis.

Exercise 1.16 If A is an upper triangular matrix then its eigenvalues, with
proper algebraic multiplicity, are its diagonal elements.

Exercise 1.17 Every matrix over C is similar to an upper triangular matrix.
More generally, a matrix over the field F is similar to a triangular matrix if
and only if all roots of fA belong to F.

Exercise 1.18 Let λ1, . . . , λn be the eigenvalues of the n×n matrix A (listed
with their algebraic multiplicities). Then det(A) =

∏
i λi and tr(A) =

∑
i λi.

Exercise 1.19 Show that
(

1 0
0 1

)
is not similar to

(
1 1
0 1

)
. Verify that their

characteristic polynomials are identical. Show that the second matrix is not
diagonalizable.
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Exercise 1.20 Let F = C (or any algebraically closed field). Show that A
is diagonalizable if and only if each eigenvalue of A have same geometric and
algebraic multiplicities.

Exercise 1.21 If A is a diagonal matrix, A =

 λ1

. . .

λn

, and f is a

polynomial then f(A) =

 f(λ1)
. . .

f(λn)

.

Definition 1.22 mA(x), the minimal polynomial of A, is the monic poly-
nomial of lowest degree, such that mA(A) = 0.

Exercise 1.23 Show that mA(x) exists and degmA ≤ n2.

Exercise 1.24 Show that if f ∈ F[x] is a polynomial then (f(A) = 0) ⇔
(mA | f).

Theorem 1.25 (Cayley-Hamilton Theorem)

mA|fA or, equivalently, fA(A) = 0.

Consequently degmA ≤ n.

Exercise 1.26 A proof of the Cayley-Hamilton theorem over C is outlined
in this series of exercises:

1. Prove Cayley-Hamilton for diagonal matrices.

2. Prove the theorem for diagonalizable matrices.

3. Show that if Ai is a sequence of matrices, limi→∞Ai = A, and fi is a
sequence of polynomials of the same degree, and limi→∞ fi = f (coef-
ficientwise convergence) then limi→∞ fi(Ai) = f(A). In other words,
polynomials of matrices are continuous functions of the matrix entries
and the coefficients of the polynomials.
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4. Show that for any matrix A there exists a sequence of diagonalizable
matrices Ai, such that limi→∞Ai = A. In other words diagonalizable
matrices form a dense subset of the set of all matrices.
(Hint: prove it first for upper triangular matrices.)

5. Complete the proof of Cayley-Hamilton theorem over C.

Exercise 1.27 Complete the proof of the Cayley-Hamilton Theorem (over
any field) by observing that if an identity of (multivariate) polynomials holds
over Z then it holds over any commutative ring with identity.

2 Euclidean Spaces

In this section the field F is either R or C. If a ∈ C, we will denote by ā the
complex conjugate of a. Of course, if a ∈ R, then ā = a. Similarly if A is a
matrix then each entry of Ā is the complex conjugate of the corresponding
entry of A.

Definition 2.1 Let x,y ∈ Fn. Their (standard) inner product is

〈x,y〉 :=
∑

i = 1nx̄iyi.

Definition 2.2 If x ∈ Fn is a vector, its norm is defined as

‖x‖ :=
√
〈x,x〉.

Definition 2.3 If A is a matrix, then the adjoint matrix is A∗ = ĀT

(conjugate-transpose).

Exercise 2.4 We think of vectors as column matrices. Verify the following:

1. 〈x,y〉 = x∗y

2. 〈A∗x,y〉 = 〈x, Ay〉

3. ((∀x,y)(〈Bx,y〉 = 〈x, Ay〉))⇔ B = A∗

Exercise 2.5 (AB)∗ = B∗A∗, where A,B are not necessarily square matri-
ces. (What dimensions should they have so that we can multiply them?)
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Definition 2.6 We say that a matrix A is self-adjoint if A∗ = A. A is also
called symmetric if F = R and Hermitian if F = C.

Exercise 2.7 If A = A∗ then all eigenvalues of A are real.

Exercise 2.8 Show that the characteristic polynomial of a Hermitian matrix
has real coefficients.

Definition 2.9 The quadratic form associated with a self-adjoint matrix
A is a function QA(x) : Fn → F, defined by

QA(x) = x∗Ax =
∑
i,j

aijx̄ixj.

Definition 2.10 The operator norm of a matrix A is defined as

‖A‖ = max
‖x‖=1

‖Ax‖.

Exercise 2.11 Show that ‖A‖ =
√
λ1(A∗A), where λ1(A∗A) denotes the

largest eigenvalue of A∗A. (Note that A∗A is self-adjoint. A does not need
to be a square matrix for this exercise.)

Definition 2.12 A self-adjoint matrix A is called positive semidefinite
if (∀x ∈ F)(QA(x) ≥ 0). A is called positive definite if (∀x ∈ F \
{0})(QA(x) > 0).

Exercise 2.13 Show that a self-adjoint matrix is positive definite (resp.
semidefinite) if and only if all its eigenvalues are positive (resp. nonnega-
tive).

Exercise 2.14 Show that a self-adjoint matrix A is positive definite if and
only if all of its upper left corner determinants det(a11), det

(
a11 a12

a21 a22

)
, etc, are

positive.
(Hint: Use the Interlacing Theorem (given in Exercise 2.29 below).)

Definition 2.15 A set of vectors a1, . . . , an is orthonormal if 〈ai, aj〉 = δij
where δij = 1 if i = j and δij = 0 otherwise.

Definition 2.16 A is a unitary matrix if A∗A = I.
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Exercise 2.17 Show that if A is unitary and λ is an eigenvalue of A then
|λ| = 1.

Exercise 2.18 Let A be an n × n matrix. Prove that the following are
equivalent:

1. A is unitary;

2. AA∗ = I;

3. the columns of A form an orthonormal basis of Fn;

4. the rows of A form an orthonormal basis of Fn.

Definition 2.19 The n× n matrix A is normal if AA∗ = A∗A.

Exercise+ 2.20 Show that A is normal if and only if A has an orthonormal
eigenbasis. Equivalently, show that A is normal if and only if there exists a
unitary matrix S such that S∗AS is a diagonal matrix. If so, the entries in
the diagonal are the eigenvalues of A.

Exercise 2.21 Show that the n× n matrix A is

1. self-adjoint if and only if A is normal and all its eigenvalues are real;

2. unitary if and only if A is normal and all its eigenvalues have unit
absolute value.

NOTATION: For the rest of this section we use the following notation: F = C
or R; A is a self-adjoint matrix over F. The eigenvalues of A (with multiplic-
ity) are λ1 ≥ . . . ≥ λn.

Now we will formulate the fundamental

Theorem 2.22 (Spectral Theorem) The eigenvalues of A are real and A
has an orthonormal eigenbasis.

Let e1, . . . , en be an orthonormal eigenbasis for A.

Exercise 2.23 Show that if x =
∑

i xiei, then

QA(x) =
∑
i

λi|xi|2.
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Definition 2.24 The Rayleigh quotient is the function R(x) : Fn \{0} →
R defined by

R(x) =
x∗Ax

x∗x
=
QA(x)

‖x‖2
.

Exercise 2.25 Show that

λ1 = max
‖x‖=1

R(x).

Exercise 2.26 Show that

λ2 = max
‖x‖=1

x⊥e1

R(x);

λ3 = max
‖x‖=1

x⊥e1,e2

R(x);

and so on.

Exercise 2.27 Show that if λ1 = x∗Ax, ‖x‖ = 1, then Ax = λ1x.

Exercise 2.28 (Fischer-Courant Theorem)

λi = max
U≤Fn

dimU=i

min
x∈U

R(x)

where the maximum runs over all linear subspaces U ≤ Fn of dimension i.

Exercise 2.29 (Interlacing Theorem) Let A be an n×n self-adjoint ma-
trix. We can construct a new (n− 1)× (n− 1) matrix by removing the ith
row and the ith column of A. The resulting matrix B is self-adjoint. Let
λ1 ≥ . . . ≥ λn be the eigenvalues of A and µ1 ≥ . . . ≥ µn−1 be the eigenvalues
of B (with multiplicity). Show that λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ µn−1 ≥ λn.

3 Applications to Graph Theory

There are two important square matrices commonly associated to graphs –
the adjacency matrix of the graph, and the (finite or combinatorial) Lapla-
cian. This allows us to apply the theory of eigenvalues to graphs, and it
turns out that a great deal of information about the graph is carried in the
spectra of these matrices.

For graph theory terminology please refer to “Graph Theory Terminol-
ogy“ handout.
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3.1 The Adjacency Matrix

Definition 3.1 Let G = (V,E) be a graph; assume V = [n] = {1, 2, . . . , n}.
The adjacency matrix AG = (aij) of G is the n × n (0, 1)-matrix defined
by aij = 1 if {i, j} ∈ E (vertices i and j are adjacent); and aij = 0 otherwise.
Note that aii = 0.

Exercise 3.2 Show that the (i, j) entry of (AG)k gives the number of walks
of length k between vertex i and vertex j. Give an interpretation for the
(i, i) entry of (AG)k and for

∑n
j=1(AG)ij.

The adjacency matrix acts on functions on the graph. That is, if f : V →
R is a function on the vertices of the graph (which can also be considered a
column matrix), then

Af(i) =
∑
j

{i,j}∈E

f(j).

Notice that this action is just matrix multiplication.

Exercise 3.3 Isomorphic graphs have similar adjacency matrices.

This allows us to make the following definitions:

Definition 3.4 κ is an eigenvalue of G if it is an eigenvalue of AG. The
characteristic polynomial of G is the characteristic polynomial of AG.
The spectrum of G is the ordered set of all eigenvalues of AG (with multi-
plicities).

As before we will assume that eigenvalues of G are always ordered κ1 ≥
. . . ≥ κn.

Exercise 3.5 Compute the spectrum of each of the following graphs: Kn

(the complete graph on n vertices), the star on n vertices (a tree with a
vertex of degree n− 1, denoted Kn−1,1), Kk,` (the complete bipartite graph).

Exercise 3.6 Let G = (V,E) be a graph. Let Gi be the graph obtained by
deleting the ith vertex (and the edges incident with it) from G. Show that
eigenvalues of G and Gi interlace.

Exercise 3.7 (∀i) (|κi| ≤ κ1).
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Exercise 3.8 If G is connected then κ1 > κ2.

Exercise 3.9 If G is bipartite , then κn−i = −κi+1.

Exercise 3.10 If G is connected and κ1 = −κn than G is bipartite. Thus if
G is connected and not bipartite then (∀i > 1) (|κi| < κ1).

Exercise 3.11 κ1 ≤ max
i

degG(i).

Exercise 3.12 κ1 ≥ 2|E|
n

= 1
n

∑
i

degG(i) (average degree).

Exercise 3.13 If G is k-regular, i.e. (∀i)(degG(i) = k), then κ1 = k.

Exercise 3.14 If κ1 = max
i

degG(i) and G is connected then G is regular.

Exercise 3.15 If κ1 = 1
n

∑
i

degG(i) then G is regular.

Exercise 3.16 1. Upper bounds on the maximal eigenvalue are heredi-
tary; that is, if H ⊂ G is a subgraph, then κ1(H) ≤ κ1(G).

2. Show that upper bounds on the second eigenvalue κ2 fail to be hered-
itary in general, but are hereditary in the special case that H is an
induced subgraph.
(Hint: for the first part, consider the spectrum of Kn. For the second
part, recall the Interlacing Theorem.)

Exercise 3.17 If diam(G) = d, then the number of distinct eigenvalues of
AG is at least d+ 1.
(Hint: Prove that under the diameter hypothesis, I, A, . . . , Ad are linearly
independent. To show this, recall the significance of the (i, j) entry of Ak

from Exercise 3.2.)

3.2 The Laplacian and Expansion of a Graph

Definition 3.18 We define the Laplacian of the graph G to be

∆G = DG − AG

where AG is the adjacency matrix and DG is a diagonal matrix, DG(i, i) =
degG(i).
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Exercise 3.19 Verify that for x = (x1, . . . ,xn)T ,

x∗∆Gx =
∑
{i,j}∈E

|xi − xj|2.

Exercise 3.20 Show that ∆G is positive semidefinite.

However, ∆G is not positive definite:

Exercise 3.21 Check that ∆Gj = 0, where j = (1, . . . , 1)T .

Exercise 3.22 Show that if G is connected, then 0 is a simple eigenvalue.

Exercise 3.23 Prove that the multiplicity of 0 as an eigenvalue of ∆G is
equal to the number of connected components of G.

Therefore if 0 = λ1 ≤ λ2 ≤ . . . ≤ λn are eigenvalues of ∆G then λ2 = 0 if
and only if G is disconnected.

Definition 3.24 (Fiedler) λ2 is the algebraic connectivity of G.

Exercise 3.25 If G is a k-regular graph (every vertex has degree k) and
k = κ1 ≥ . . . ≥ κn are eigenvalues of AG and 0 = λ1 ≤ . . . ≤ λn are
eigenvalues of ∆G the λi + κi = k. In particular, λ2 = κ1 − κ2. λ2 is also
referred to as the eigenvalue gap or spectral gap.

Definition 3.26 If A ⊆ G we denote by δ(A) the number of edges between A

and A = V \A. The isoperimetric ratio for A is δ(A)
|A| . The isoperimetric

constant of G is

iG = min
A6=∅
|A|≤n

2

δ(A)

|A|
.

The next result shows the important fact that if λ2 is large then G is
“highly expanding”.

Exercise∗ 3.27 λ2 ≤ 2 δ(A)
|A| .

Later we will state a companion result which shows that in some sense if
λ2 is small then G has a small isoperimetric constant.
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