1 Characters of finite fields

Definition 1.1 A character of a finite field F is a function $\chi : F \to \mathbb{C}$, satisfying the following conditions:

1. $\chi(0) = 0$
2. $\chi(1) = 1$
3. $(\forall a, b \in F)(\chi(ab) = \chi(a)\chi(b))$.

Note that a character is a homomorphism from the multiplicative group $F^\times = F \setminus \{0\}$ to the multiplicative group \mathbb{C}^\times.

Example 1.2 For any field F, we define the principal character, χ_0, by $\chi_0(0) = 0$ and $(\forall a \neq 0)(\chi_0(a) = 1)$.

Notation. For a prime power $q = p^k$, F_q denotes the field of order q (i.e., the field \mathbb{F}_q has q elements). For $k = 1$, the field \mathbb{F}_p is the field of mod p residue classes. Note that for $k \geq 2$, the mod p^k residue classes do not form a field, so for $k \geq 2$, the field F_q is not the same as the ring of residue classes mod q. It is known, however, that for every prime power q there exists a field F_q and this field is unique up to isomorphism. If you are not familiar with finite fields, you may still read this note, always replacing q by p.

Example 1.3 When $F = \mathbb{F}_p$ for an odd prime p, we define the quadratic character $\chi(a) := \left(\frac{a}{p}\right)$, where $\left(\frac{a}{p}\right)$ is 0 when $a = 0$, 1 when a is a quadratic residue, and -1 when a is a quadratic nonresidue. $\left(\frac{a}{p}\right)$ is called the Legendre symbol.

Exercise 1.4 Show that, for all a, $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$.
Next, we extend the concept of the **quadratic character** to all finite fields of odd order.

Example 1.5 Let \mathbb{F}_q be a finite field of odd order q. The **quadratic character** χ of \mathbb{F}_q is defined as follows: for $a \in \mathbb{F}_q$,

$$
\chi(a) = \begin{cases}
1 & \text{if } (\exists b \in \mathbb{F}_q)(a = b^2 \neq 0); \\
-1 & \text{if } (\forall b \in \mathbb{F}_q)(a \neq b^2); \\
0 & \text{if } a = 0.
\end{cases}
$$

Exercise 1.6 Let q be an odd prime power and χ the quadratic character of \mathbb{F}_q. Prove: if $q \equiv -1 \pmod{4}$ then $\chi(-1) = -1$; and if $q \equiv 1 \pmod{4}$ then $\chi(-1) = 1$.

Exercise 1.7 For any prime power q, prove: $(\forall a \in \mathbb{F}_q)(a^{q-1} = 1)$.

(Note that for $q = p$ a prime, this is Fermat’s Little Theorem.) *Hint.* Use Lagrange’s theorem from group theory (the order of a subgroup divides the order of the group).

The order of a nonzero element $a \in \mathbb{F}_q$ is the smallest positive k such that $a^k = 1$. It follows from the preceding exercise that $k | q - 1$ ("k divides $q - 1").

Corollary 1.8 $(\forall a \in \mathbb{F}_q)(\chi(a) \text{ is a complex root of unity})$.

Indeed, if $a^k = 1$ then $(\chi(a))^k = \chi(a^k) = \chi(1) = 1$.

Definition 1.9 The **order** of a character is the least positive integer s such that $\chi(a)^s = 1$ for all $a \in \mathbb{F}_q$, $a \neq 0$.

Note that, for any character of \mathbb{F}_q, the order s must divide $q - 1$.

The following is a basic fact about the structure of finite fields.

Theorem 1.10 For any prime power q, the multiplicative group \mathbb{F}_q^\times is cyclic. Equivalently, there exists some $g \in \mathbb{F}_q^\times$ such that $\mathbb{F}_q^\times = \{g, g^2, \ldots, g^{q-1} = 1\}$.

Such an element g is called a **generator** of \mathbb{F}_q^\times, or a **primitive root** of the field \mathbb{F}_q.

Exercise 1.11 Prove the Theorem. *Hint.* Use Sylow’s Theorem from group theory and the fact that a polynomial of degree n has at most n roots in a field.

Corollary 1.12 If χ is a character of \mathbb{F}_q of order s, and g is a primitive root of \mathbb{F}_q, then $\chi(g)$ is a primitive s^{th} root of unity. Conversely, for any $\omega \in \mathbb{C}$ such that $\omega^{q-1} = 1$, there exists a unique character χ of \mathbb{F}_q with $\chi(g) = \omega$.

Exercise 1.13 Prove the Corollary.

Note that if we take $\omega = 1$ we get the principal character, and, for q odd, if we take $\omega = -1$, we get the quadratic character.
2 Character Sum: Weil’s Theorem

In this section we describe one of the most beautiful results of 20th century mathematics.

First we consider the sum of characters over all elements of a field.

Exercise 2.1 If \(\chi \neq \chi_0 \), then \(\sum_{a \in \mathbb{F}_q} \chi(a) = 0 \).

Let now \(f \) be a polynomial of degree \(d \) over \(\mathbb{F}_q \). We wish to estimate the sum
\[
S(\chi,f) = \sum_{a \in \mathbb{F}_q} \chi(f(a))
\]

Clearly, since \(|\chi(f(a))| \) is 0 or 1 for all \(a \), we have \(|S(\chi,f)| \leq q \). This is the best possible upper bound; for example, if \(f \) is identically 1 then \(S(\chi,f) = q \); if \(\chi \) is the quadratic character and \(f(x) = x^2 \), then \(S(\chi,f) = q - 1 \).

Amazingly, once the trivial exceptions have been eliminated, a much stronger bound holds on the magnitude of \(S(\chi,f) \): the values of the character tend to cancel each other out roughly by the same amount as if they were chosen to be \(\pm 1 \) by coin flips.

Theorem 2.2 (André Weil) Let \(\mathbb{F}_q \) be a finite field, and let \(\chi \) be a character of \(\mathbb{F}_q \) of order \(s \). Let \(f(x) \) be a polynomial of degree \(d \) over \(\mathbb{F}_q \) such that \(f(x) \) cannot be written in the form \(c(h(x))^s \), where \(c \in \mathbb{F}_q \). Then
\[
\left| \sum_{a \in \mathbb{F}_q} \chi(f(a)) \right| \leq (d - 1)\sqrt{q}.
\]

Thus, in a sense, the values of a character over the range of a polynomial behave as “random” values, even though they are fully “deterministic.” This feature is the key to a large number of applications to combinatorics and the theory of computing where the goal is “derandomization”: the elimination of random choice from the proof of existence of a combinatorial object, i.e., replacing a probabilistic proof of existence by an explicit construction.

3 \(k \)-paradoxical tournaments: a proof by the Probabilistic Method

Let \(X = (V,E) \) be a digraph. Let \(x \in V \) and \(A \subseteq V \). We say that \(x \) dominates \(A \) if \((\forall a \in A)(x,a) \in E \). We write \(x \rightarrow A \) to denote this statement.

Definition 3.1 A digraph \(X = (V,E) \) is \(k \)-paradoxical if \((\forall A \subseteq V)(|A| = k \Rightarrow \exists x \in V)(x \rightarrow A) \).
Definition 3.2 A tournament is a digraph $T = (V,E)$ in which for every pair \{x, y\} of vertices, exactly one of the following holds: $x = y$ or $(x,y) \in E$ or $(y,x) \in E$.

Note that this concept corresponds to diagrams of round-robin tournaments without draws and without rematches. An edge (arrow) from a to b indicates that player a beat player b.

In a 1-paradoxical tournament, every player is beaten by someone. In a 2-paradoxical tournament, every pair of players is beaten by someone. Even 2-paradoxical tournaments are not straightforward to construct.

Exercise 3.3 Construct a 2-paradoxical tournament on 7 players. *Hint.* Make your diagram have a symmetry of order 7.

So it is quite surprising that k paradoxical tournaments actually do exist for every k. Constructing such tournaments even for $k = 3$ is quite hard. However, Paul Erdős, in one of the gems of his Probabilistic Method, demonstrated the existence of such tournaments without telling us how to construct them.

Theorem 3.4 (Erdős) If $n > ck^{2}2^{k}$ then there exists a k-paradoxical tournament on n vertices. (*c* is an absolute constant.)

What Erdős has shown is not just that such tournaments exist, but they abound: almost every tournament on a given set of n vertices (players) is k-paradoxical. The model of “random tournaments” is very simple: flip a coin to decide the outcome of each match.

Exercise 3.5 Let $A \subset V$ be a set of k players (out of the set V of n players) and let x be a player, not in A. Calculate the probability that $x \rightarrow A$.

Exercise 3.6 Let A be as before. Show that the probability that none of the remaining $n - k$ players dominates A is exactly $(1 - 2^{-k})^{n-k}$.

Exercise 3.7 Infer from the preceding exercise that the probability that our random tournament is not k-paradoxical is less than

$${n \choose k} (1 - 2^{-k})^{n-k}. \tag{1}$$

Exercise 3.8 Conclude that if $n \choose k (1 - 2^{-k})^{n-k} \leq 1$ then there exists a k-paradoxical tournament on n vertices.

Exercise 3.9 Prove that if $k \geq 3$ and $n > 4k^{2}2^{k}$ then the inequality in the preceding exercise will hold. (A constant $c > 4$ works for $k = 2$; smaller constants work for larger values of k. As $k \to \infty$, the value of a suitable constant $\to 1$.) *Hint.* Use the following facts: $n \choose k < n^{k}/k!$; $1 - x < e^{-x}$; and the monotonicity of the function $x/\ln x$.

4
This concludes the proof of Erdős’s Theorem.

Exercise 3.10 Prove that if \(n > ck^22^k \) (for some absolute constant \(c \)) then almost all tournaments on a given set of \(n \) players are \(k \)-paradoxical.

Here “almost all” means that for every \(\epsilon > 0 \) there exists \(n_0 \) such that if \(n > n_0 \) and \(n > ck^22^k \) then the probability that the random tournament is \(k \)-paradoxical is greater than \(1 - \epsilon \). *Hint.* Revisit the same calculations done for the previous exercises. Only minimal modifications are needed.

4 Paley tournaments: an explicit construction of \(k \)-paradoxical tournaments

We describe an explicit construction of \(k \)-paradoxical tournaments for arbitrarily large \(k \).

Definition 4.1 Let \(q \equiv -1 \) be a prime power and let \(\chi \) denote the quadratic character of \(F_q \). The Paley tournament of order \(q \) is defined as a digraph \(P(q) = (V,E) \) where \(V = F_q \); we have a directed edge \(a \rightarrow b \) iff \(\chi(a-b) = 1 \).

Note that because \(q \equiv -1 \pmod{4} \), we have \(\chi(-1) = -1 \) (Exercise 1.6). Since the character is multiplicative, this ensures that \(\chi(a-b) = -\chi(b-a) \), so there is exactly one directed edge between any two distinct vertices. This shows that \(P(q) \) is a tournament. (We also need to note that \(\chi(0) = 0 \), so there are no loops in the digraph.)

Theorem 4.2 (Graham-Spencer) If \(q \equiv -1 \pmod{4} \) and \(q \geq k^24^k \), then \(P(q) \) is a \(k \)-paradoxical tournament.

Proof: Let \(A = \{a_1, \ldots, a_k\} \subset V \) be an arbitrary \(k \)-subset. Let \(N = \#\{x \in V : x \rightarrow A\} \) be the number of vertices which dominate the set \(A \). We seek to show that \(N > 0 \). In fact, we will show that \(N \approx \frac{q}{2^k} \).

Consider the following three cases:

- \(x \rightarrow A \Rightarrow (\forall i)(\chi(x-a_i) = 1) \).
- \(x \not\rightarrow A \) and \(x \notin A \Rightarrow (\forall i)(\chi(x-a_i) = \pm 1) \) and \((\exists i)(\chi(x-a_i) = -1) \).
- \(x \in A \Rightarrow (\exists i)(\chi(x-a_i) = 0) \).

Now let \(\psi(x) := \prod_{i=1}^{k}(\chi(x-a_i) + 1) \). Considering the cases above, we have

\[
\psi(x) = \begin{cases}
2^k, & x \rightarrow A \\
0, & x \not\rightarrow A, x \notin A \\
0 \text{ or } 2^{k-1}, & x \in A
\end{cases}
\]

The case \(\psi(x) = 2^{k-1} \) occurs for at most one \(x \in A \); namely, if and only if \(x \) dominates the rest of \(A \).
Thus, we can compute the sum
\[S := \sum_{x \in \mathbb{F}_q} \psi(x) = 2^k N + \epsilon 2^{k-1}, \]
where \(\epsilon \in \{0, 1\} \). We will have succeeded in showing that \(N > 0 \) if we can prove that \(S \) is large (\(S > 2^{k-1} \) will suffice).

Using the notation \([k] := \{1, \ldots, k\} \), we obtain the expansion
\[
S = \sum_{x \in \mathbb{F}_q} \prod_{i=1}^k (\chi(x - a_i) + 1) = \sum_{x \in \mathbb{F}_q} \sum_{I \subseteq [k]} \prod_{i \in I} \chi(x - a_i).
\]

Letting \(f_I(x) := \prod_{i \in I} (x - a_i) \) and using the multiplicativity of \(\chi \) we see that
\[S = \sum_{x \in \mathbb{F}_q} \sum_{I \subseteq [k]} \chi(f_I(x)) = \sum_{I \subseteq [k]} \sum_{x \in \mathbb{F}_q} \chi(f_I(x)) = \sum_{x \in \mathbb{F}_q} \chi(f_{\emptyset}(x)) + \sum_{I \neq \emptyset} \sum_{x \in \mathbb{F}_q} \chi(f_I(x)). \]

Let us denote by \(R \) the rest of the sum: \(R := \sum_{I \neq \emptyset} \sum_{x \in \mathbb{F}_q} \chi(f_I(x)) \). Since the empty product is 1 and \(\chi(1) = 1 \), we have \(S = (\sum_{I \subseteq [k]} 1) + R = q + R \). If we can show that \(q \) dominates \(R \) then we shall be done since then \(N \approx S/2^k \approx q/2^k \), as desired.

Now
\[
|R| = \left| \sum_{I \neq \emptyset} \sum_{x \in \mathbb{F}_q} \chi(f_I(x)) \right| \leq \sum_{I \neq \emptyset} \left| \sum_{x \in \mathbb{F}_q} \chi(f_I(x)) \right| \leq \sum_{I \neq \emptyset} (|I| - 1) \sqrt{q} \quad \text{(by Weil)}.
\]

Note we can apply Weil because \(f_I \), by definition, has no multiple roots, so in particular \(f_I(x) \neq c (h(x))^2 \). There are \(2^k \) choices for \(I \subseteq [k] \) and, for each choice, \(|I| \leq k \). Thus, we have shown that \(|R| < 2^k \cdot (k - 1) \sqrt{q} \).

From above, \(S = 2^k N + \epsilon 2^{k-1} = q + R \), so
\[N > \frac{q}{2^k} - (k - 1) \sqrt{q} - \frac{1}{2} > \frac{q}{2^k} - k \sqrt{q}. \]

So for \(N > 0 \) it suffices that \(\frac{q}{2^k} \geq k \sqrt{q} \), i.e., \(q \geq k^2 4^k \). \(\square \)