
Discrete Math, Second Series, 11th Problem Set (August 11)

REU 2003

Instructor: László Babai
Scribes: Mridul Mehta and Tom Hayes

1 Multiply transitive groups

We use Ω(t) to denote the set of ordered t-tuples of distinct elements of Ω. So if |Ω| = n then
|Ω(t)| = n(n− 1) · · · · · (n− t+ 1).

Definition 1.1. A permutation group G ≤ Sym(Ω) is t-transitive if G acts transitively on Ω(t).
A 2-transitive group is also called doubly transitive; a 3-transitive group is triply transitive, etc.

Exercise 1.2. If G is t-transitive then n(n− 1) · · · · · (n− t+ 1) | |G|.

Definition 1.3. The degree of transitivity of G is the largest t such that G is t-transitive.

Exercise 1.4. The degree of transitivity of Sn is n; the degree of transitivity of An is n− 2.

Exercise 1.5. For n ≥ 4, the degree of transitivity of Dn is 1.

Exercise 1.6. If AutX is doubly transitive then X = Kn or Kn.

Definition 1.7. AGL(n, q) is the affine general linear group. This group acts on Fnq by any
composition of linear transformations and translations (exercise: one of each suffice). q is the
order of the field, n is the dimension.

Exercise 1.8. AGL(n, q) acts doubly transitively on Fnq .

Exercise 1.9. If 3 points in Fnq are not collinear then they are equivalent under AGL to every
other such triple.

Exercise 1.10. AGL(n, 2) is triply transitive. So is AGL(1, 3). All others AGL’s have degree
of transitivity 2.

Exercise 1.11. For n > 2, AGL(n, 2) is not 4-transitive.

Exercise 1.12. If G is t-transitive then Gx (stabilizer of a point) is (t− 1)-transitive.
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The following remarkable permutation groups were found by Mathieu around 1870. They
are called “Mathieu groups;” they are defined as permutation groups of degree indicated in
the subscript:

1. M24 is 5-transitive

2. M23 is 4-transitive

3. M12 is 5-transitive

4. M11 is 4-transitive

Theorem 1.13. If G 6= An, Sn, then the degree of transitivity of G is ≤ 5; in fact the degree
of transitivity is ≤ 3 unless G = Mi for i ∈ {11, 12, 23, 24}.

This is a consequence of the ENORMOUS Theorem.

ENORMOUS Theorem: Classification of finite simple groups. (≈ 1980 or ≈
1995). Proof is 15,000 pages long (human generated), by about 100 authors. There is a
“revisionist project” to compress this proof to a more readable 5000 pages . . .

This theorem has a large number of important, simply stated consequences. One of them:

Corollary 1.14. Every finite simple group is generated by two elements.

An earlier theorem is this:

Theorem 1.15 (Odd Order Theorem, Feit-Thompson, 1963). Every (nonabelian) finite
simple group has even order. Equivalently, every finite group of odd order is solvable.

Exercise 1.16. Prove that these two statements are equivalent.

Remark 1.17. The Feit-Thompson theorem was originally 270 pages, and contributed to
Thompson (a former University of Chicago graduate student) earning the Fields medal.

History: Burnside, circa 1900. Structure of doubly-transitive permutation groups via simple
groups.

Combined with the Classification of Finite Simple Groups, Curtis, Kantor and Seitz ob-
tained, in a 57-page paper, a classification of doubly-transitive permutation groups
(except those with an abelian normal subgroup (called the “affine case”)) (1976).

Theorem 1.13 (there are no 6-transitive permutation groups other than Sn and An) is a
corollary to their work. Here is another consequence.

Corollary 1.18 (Schreier’s Hypothesis). If G is simple then Out(G) is solvable.
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Jordan proved (circa 1890) that t < c log2 n/ log log n, where t is the degree of transitivity
of any permutation group of degree n other than Sn and An.

Lemma 1.19. G ≤ Sn, p1, . . . , pk distinct prime divisors of |G|, and p1 · · · p` ≥ nk. Then

(∃π ∈ G)(2 ≤ deg(π) ≤ n/k)

Claim 1.20. (∃σ ∈ G,∃i ≤ `)(#{x ∈ Ω: pi | period of x under σ} ∈ [2, n/k])

Proof of Lemma from Claim. Raise σ to power m which is the maximal divisor of n!
relatively prime to pi. So all cycles in σm have length a power of pi and σm 6= 1.

Proof of Claim. Set Q(x) = {pi : pi | period of x}. Then

(∀x)

 ∏
pi∈Q(x)

pi ≤ n


But

∏̀
i=1

pi ≥ nk.

Taking logarithms,

(∀x)

 ∑
pi∈Q(x)

log pi ≤ log n


But

∑̀
i=1

log pi ≥ k log n.

What we want to know is: does there exist i such that

f(i) :=
∑

x:pi∈Q(x)

1 ≤ n/k?

∑̀
i=1

log pif(i) =
∑̀
i=1

log pi
∑

x:pi∈Q(x)

1

=
∑
x

∑
i:pi∈Q(x)

log pi

≤ n log n.
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The weighted average of f(i) is thus∑`
i=1 log pif(i)∑`
i=1 log pi

≤ n log n
k log n

=
n

k
.

Thus in particular, there exists i such that f(i) ≤ n/k.

Lemma 1.21. Suppose G is t-transitive, where t = p1 + · · ·+ p`. (Pretend we don’t know the
Enormous Theorem). Then there exists π ∈ G such that π has cycles of length each pi.

Proof: Since G is t-transitive, we can require that π acts on the t elements by inducing orbits
of lengths p1, . . . , p`.

Let x be such that
∑

p<x p ≈ n4, so that x ≈ 4 lnn. Let t =
∑

p<4 lnn p ≈ c ln2 n/ ln lnn
(exercise!).

∏
p<x p ≈ ex(1+o(1)).

(This ends a significant portion of the proof of Jordan’s bound on the degree of transitivity.
For the rest, see the B-Seress article handed out.)

2 Estimating Diameters of Cayley Graphs of Sn or An

Let G = Sn or G = An. Let T be a generating set. Question: What is the distance (from the
identity element, in the Cayley graph Γ(G,T )) of the element π from Lemma 1.21? I. e., what
is the word length of π over T?

Build the directed graph of the effects of T on Ω(t). Specifically, for every ~x ∈ Ω(t), for
every σ ∈ T , put an edge from ~x to ~xσ.

Exercise 2.1. Since G acts t-transitively, this graph is strongly connected.

This implies a bound on the word length of |Ω(t)| = n(n− 1) · · · (n− t+ 1) < nt.

This ends a significant portion of the proof that the diameter of all Cayley graphs of Sn
and An is < e

√
n logn(1+o(1)).

3 Possible Pathologies in Neighborhood Sequence of a Vertex-
Transitive Graph X

Si(x) = {y | dist(x, y) = i}. Let si = |Si(x)|. s0 = 1, s1 = degree. si.

Claim: s4 ≥ cs3, where c = 2/13, if diam(X) ≥ 7.

The increase si+1/si can be at most the degree minus 1. But how much can the value go
down from one level to the next?

4



3.1 EXPANSION of vertex-transitive graphs

Let S ⊆ V (X), and let ∂S = {x ∈ V \ S | (∃y ∈ S)(x ∼ y)}. The isoperimetric ratio is |∂S||S| .
In a continuous setting, this would be a ratio of surface area to volume.

For a network to be reliable, it should not be possible to disconnect a large part of the
network by breaking a small number of edges. In other words, a large isoperimetric ratio is
desirable for all subsets.

Theorem 3.1 (Global expansion, Aldous). Let X be a finite connected vertex-transitive
graph (undirected). If |S| ≤ |V |/2 then

|∂S|
|S|
≥ 2

2d+ 1
,

where d is the diameter of X.

Proof: In B-Seress article (Corollary 2.3).

Theorem 3.2 (local expansion). Let X be a finite connected vertex-transitive graph (undi-
rected). If S ⊆ V and diam(S) < diam(V ). Then

|∂S|
|S|
≥ 2

diam(S) + 2
.

Proof: This is Theorem 3.2 in the B-Seress article.

Here is another version which does not assume the diameter of S is less than that of V :

Theorem 3.3 (local expansion). Let X be a finite connected vertex-transitive graph (undi-
rected), If S ⊆ V , and |S| ≤ |V |/2, then

|∂S|
|S|
≥ 2

2 diam(S) + 1
.

Now we apply these results to neighborhood sequences. By definition, s3 = |∂B(2, x)|,
where B(2, x) is the ball of radius 2 around x. Now |B(2, x)| = s0 + s1 + s2. So by the last
result,

s3

s0 + s1 + s2
≥ 2

9
,

and more generally,

si
s0 + · · ·+ si−1

≥ 2
4i− 3

,

assuming either that s0 + s1 + s2 ≤ n/2 or diam(X) ≥ 2i− 1.
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Theorem 3.4. Let G be an infinite, locally finite connected vertex-transitive graph. Then

|∂S|
|S|
≥ 1

diam(S) + 1
.

Proof: Let d = diam(S). Let N denote the number of shortest paths of length d+ 1 passing
through a given vertex. Count those among all such possible paths which intersect S. There
are at least |S|N/(d+2) of these. All of these intersect ∂S. But at most |∂S|N paths intersect
the boundary. Hence

|∂S|N ≥ |S|N
d+ 2

and so |∂S|/|S| ≥ 1/(d+ 2).

Exercise 3.5. Improve the above proof to actually prove the theorem as stated (replace d+ 2
with d+ 1).

Wesley Pegden clarified that the neighborhood sequence of a locally infinite vertex-transitive
graph cannot show any pathology: If X is a locally infinite, connected, vertex transitive graph,
then s0 = 1, s1 =∞,∞, . . . , possibly sdiam = finite.

A further question: Are all the infinite cardinalities equal, except possibly for the last one?
(Answer: yes – Wesley.)

Open question: what about directed vertex-transitive graphs with infinite out-degree?

Exercise 3.6. For all d ≥ 2, construct an infinite vertex transitive, locally infinite graph of
diam = d, such that sd = finite. (Probably possible)

4 Diameter of Sn

Recall the following result:

Lemma 4.1. For A,B ⊆ Ω, |Ω| = n, and G ≤ Sym(Ω) transitive, then

E (|A ∩Bσ|) =
|A||B|
n

.

In other words, if µ(A) := |A|/n, is the normalized size, then E (µ(A ∩Bσ)) = µ(A)µ(B).

Proof: For each x ∈ Σ, define the indicator variables

ϑx =
{

1 if x ∈ Bσ

0 otherwise
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Then

|A ∩Bσ| =
∑
x∈A

ϑx.

By the linearity of expectation,

E (|A ∩Bσ|) =
∑
x∈A

E(ϑx) =
∑
x∈A

|B|
n

=
|A||B|
n

.

Recall that deg[σ, τ ] ≤ 3| supp(σ) ∩ supp(τ)| (review!).

Claim 4.2. For every ε > 0, there exists c such that the following holds. If G ≤ Sn, transitive,
G = 〈T 〉, σ ∈ G, A := supp(σ). Then ∃τ ∈ G such that distT (τ) ≤ nc such that |A ∩ Aτ | ≤
|A|2(1+ε)

n .

Definition 4.3. Let ξ be the position of a particle in Ω, i. e., a random variable whose value
is an element of Ω. We say ξ has an ε-nearly uniform distribution if

(∀x ∈ Ω)Pr(ξ = x) =
1± ε
n

.

(We will use the shorthand a = (1±ε)b in place of the more cumbersome a ∈ [(1−ε)b, (1+ε)b].)

Definition 4.4 (“Lazy random walk”). Let G = 〈T 〉, where T = T−1 and 1 ∈ T . Let
ξ0 ∈ G be the starting point (arbitrary). Define ξt+1 = ξσt , where σ ∈ T is chosen uniformly
at random.

Theorem 4.5. Let G = 〈T 〉, G transitive on Ω, |Ω| = n. Let ξt be distributed according to a
lazy random walk defined above. Then after t ≤ nc steps, ξt is ε-nearly uniform.

¿From this it follows that a random σ ∈ G can be replaced with a short word in the
generators in Lemma 4.1:

Corollary 4.6. Let G = 〈T 〉, G transitive on Ω, |Ω| = n. Let σ be a lazy random word of
length t = nc over T where c is as in the preceding theorem. Let A,B ⊂ Ω. Then

E (|A ∩Bσ|) =
|A||B|
n

(1± ε).

Exercise 4.7. Prove this result by adapting the proof of Lemma 4.1.
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