Discrete Math, Second Series, 11th Problem Set (August 11) REU 2003

Instructor: László Babai Scribes: Mridul Mehta and Tom Hayes

1 Multiply transitive groups

We use $\Omega^{(t)}$ to denote the set of ordered *t*-tuples of distinct elements of Ω . So if $|\Omega| = n$ then $|\Omega^{(t)}| = n(n-1)\cdots(n-t+1)$.

Definition 1.1. A permutation group $G \leq \text{Sym}(\Omega)$ is *t*-transitive if G acts transitively on $\Omega^{(t)}$. A 2-transitive group is also called *doubly transitive*; a 3-transitive group is *triply transitive*, etc.

Exercise 1.2. If G is t-transitive then $n(n-1)\cdots(n-t+1) \mid |G|$.

Definition 1.3. The degree of transitivity of G is the largest t such that G is t-transitive.

Exercise 1.4. The degree of transitivity of S_n is n; the degree of transitivity of A_n is n-2.

Exercise 1.5. For $n \ge 4$, the degree of transitivity of D_n is 1.

Exercise 1.6. If Aut X is doubly transitive then $X = K_n$ or $\overline{K_n}$.

Definition 1.7. AGL(n, q) is the *affine general linear group*. This group acts on \mathbb{F}_q^n by any composition of linear transformations and translations (exercise: one of each suffice). q is the order of the field, n is the dimension.

Exercise 1.8. AGL(n,q) acts doubly transitively on \mathbb{F}_q^n .

Exercise 1.9. If 3 points in \mathbb{F}_q^n are not collinear then they are equivalent under AGL to every other such triple.

Exercise 1.10. AGL(n, 2) is triply transitive. So is AGL(1, 3). All others AGL's have degree of transitivity 2.

Exercise 1.11. For n > 2, AGL(n, 2) is not 4-transitive.

Exercise 1.12. If G is t-transitive then G_x (stabilizer of a point) is (t-1)-transitive.

The following remarkable permutation groups were found by Mathieu around 1870. They are called "Mathieu groups;" they are defined as permutation groups of degree indicated in the subscript:

- 1. M_{24} is 5-transitive
- 2. M_{23} is 4-transitive
- 3. M_{12} is 5-transitive
- 4. M_{11} is 4-transitive

Theorem 1.13. If $G \neq A_n, S_n$, then the degree of transitivity of G is ≤ 5 ; in fact the degree of transitivity is ≤ 3 unless $G = M_i$ for $i \in \{11, 12, 23, 24\}$.

This is a consequence of the ENORMOUS Theorem.

ENORMOUS Theorem: Classification of finite simple groups. (\approx 1980 or \approx 1995). Proof is 15,000 pages long (human generated), by about 100 authors. There is a "revisionist project" to compress this proof to a more readable 5000 pages ...

This theorem has a large number of important, simply stated consequences. One of them:

Corollary 1.14. Every finite simple group is generated by two elements.

An earlier theorem is this:

Theorem 1.15 (Odd Order Theorem, Feit-Thompson, 1963). Every (nonabelian) finite simple group has even order. Equivalently, every finite group of odd order is solvable.

Exercise 1.16. Prove that these two statements are equivalent.

Remark 1.17. The Feit-Thompson theorem was originally 270 pages, and contributed to Thompson (a former University of Chicago graduate student) earning the Fields medal.

History: Burnside, circa 1900. Structure of doubly-transitive permutation groups via simple groups.

Combined with the Classification of Finite Simple Groups, Curtis, Kantor and Seitz obtained, in a 57-page paper, a classification of doubly-transitive permutation groups (except those with an abelian normal subgroup (called the "affine case")) (1976).

Theorem 1.13 (there are no 6-transitive permutation groups other than S_n and A_n) is a corollary to their work. Here is another consequence.

Corollary 1.18 (Schreier's Hypothesis). If G is simple then Out(G) is solvable.

Jordan proved (circa 1890) that $t < c \log^2 n / \log \log n$, where t is the degree of transitivity of any permutation group of degree n other than S_n and A_n .

Lemma 1.19. $G \leq S_n, p_1, \ldots, p_k$ distinct prime divisors of |G|, and $p_1 \cdots p_\ell \geq n^k$. Then

$$(\exists \pi \in G) (2 \le \deg(\pi) \le n/k)$$

Claim 1.20. $(\exists \sigma \in G, \exists i \leq \ell) (\# \{x \in \Omega : p_i \mid period of x under \sigma\} \in [2, n/k])$

Proof of Lemma from Claim. Raise σ to power m which is the maximal divisor of n! relatively prime to p_i . So all cycles in σ^m have length a power of p_i and $\sigma^m \neq 1$.

Proof of Claim. Set $Q(x) = \{p_i : p_i \mid \text{ period of } x\}$. Then

$$(\forall x) \left(\prod_{p_i \in Q(x)} p_i \le n\right)$$

But

$$\prod_{i=1}^{\ell} p_i \ge n^k.$$

Taking logarithms,

$$(\forall x) \left(\sum_{p_i \in Q(x)} \log p_i \le \log n \right)$$

But

$$\sum_{i=1}^{\ell} \log p_i \ge k \log n.$$

What we want to know is: does there exist i such that

$$f(i) := \sum_{x: p_i \in Q(x)} 1 \le n/k?$$

$$\sum_{i=1}^{\ell} \log p_i f(i) = \sum_{i=1}^{\ell} \log p_i \sum_{x: p_i \in Q(x)} 1$$
$$= \sum_x \sum_{i: p_i \in Q(x)} \log p_i$$
$$\leq n \log n.$$

The weighted average of f(i) is thus

$$\frac{\sum_{i=1}^{\ell} \log p_i f(i)}{\sum_{i=1}^{\ell} \log p_i} \le \frac{n \log n}{k \log n} = \frac{n}{k}.$$

Thus in particular, there exists i such that $f(i) \leq n/k$.

Lemma 1.21. Suppose G is t-transitive, where $t = p_1 + \cdots + p_\ell$. (Pretend we don't know the Enormous Theorem). Then there exists $\pi \in G$ such that π has cycles of length each p_i .

Proof: Since G is t-transitive, we can require that π acts on the t elements by inducing orbits of lengths p_1, \ldots, p_ℓ .

Let x be such that $\sum_{p < x} p \approx n^4$, so that $x \approx 4 \ln n$. Let $t = \sum_{p < 4 \ln n} p \approx c \ln^2 n / \ln \ln n$ (exercise!). $\prod_{p < x} p \approx e^{x(1+o(1))}$.

(This ends a significant portion of the proof of Jordan's bound on the degree of transitivity. For the rest, see the B-Seress article handed out.)

2 Estimating Diameters of Cayley Graphs of S_n or A_n

Let $G = S_n$ or $G = A_n$. Let T be a generating set. Question: What is the distance (from the identity element, in the Cayley graph $\Gamma(G,T)$) of the element π from Lemma 1.21? I. e., what is the word length of π over T?

Build the directed graph of the effects of T on $\Omega^{(t)}$. Specifically, for every $\vec{x} \in \Omega^{(t)}$, for every $\sigma \in T$, put an edge from \vec{x} to \vec{x}^{σ} .

Exercise 2.1. Since G acts t-transitively, this graph is strongly connected.

This implies a bound on the word length of $|\Omega^{(t)}| = n(n-1)\cdots(n-t+1) < n^t$.

This ends a significant portion of the proof that the diameter of all Cayley graphs of S_n and A_n is $< e^{\sqrt{n \log n}(1+o(1))}$.

3 Possible Pathologies in Neighborhood Sequence of a Vertex-Transitive Graph X

 $S_i(x) = \{y \mid \text{dist}(x, y) = i\}$. Let $s_i = |S_i(x)|$. $s_0 = 1, s_1 = \text{degree.} s_i$.

Claim: $s_4 \ge cs_3$, where c = 2/13, if diam $(X) \ge 7$.

The increase s_{i+1}/s_i can be at most the degree minus 1. But how much can the value go down from one level to the next?

3.1 EXPANSION of vertex-transitive graphs

Let $S \subseteq V(X)$, and let $\partial S = \{x \in V \setminus S \mid (\exists y \in S)(x \sim y)\}$. The isoperimetric ratio is $\frac{|\partial S|}{|S|}$. In a continuous setting, this would be a ratio of surface area to volume.

For a network to be reliable, it should not be possible to disconnect a large part of the network by breaking a small number of edges. In other words, a large isoperimetric ratio is desirable for all subsets.

Theorem 3.1 (Global expansion, Aldous). Let X be a finite connected vertex-transitive graph (undirected). If $|S| \leq |V|/2$ then

$$\frac{|\partial S|}{|S|} \ge \frac{2}{2d+1},$$

where d is the diameter of X.

Proof: In B-Seress article (Corollary 2.3).

Theorem 3.2 (local expansion). Let X be a finite connected vertex-transitive graph (undirected). If $S \subseteq V$ and diam(S) < diam(V). Then

$$\frac{|\partial S|}{|S|} \geq \frac{2}{\operatorname{diam}(S) + 2}$$

Proof: This is Theorem 3.2 in the B-Seress article.

Here is another version which does not assume the diameter of S is less than that of V:

Theorem 3.3 (local expansion). Let X be a finite connected vertex-transitive graph (undirected), If $S \subseteq V$, and $|S| \leq |V|/2$, then

$$\frac{|\partial S|}{|S|} \ge \frac{2}{2\operatorname{diam}(S) + 1}$$

Now we apply these results to neighborhood sequences. By definition, $s_3 = |\partial B(2, x)|$, where B(2, x) is the ball of radius 2 around x. Now $|B(2, x)| = s_0 + s_1 + s_2$. So by the last result,

$$\frac{s_3}{s_0 + s_1 + s_2} \ge \frac{2}{9},$$

and more generally,

$$\frac{s_i}{s_0 + \dots + s_{i-1}} \ge \frac{2}{4i-3},$$

assuming either that $s_0 + s_1 + s_2 \le n/2$ or diam $(X) \ge 2i - 1$.

Theorem 3.4. Let G be an infinite, locally finite connected vertex-transitive graph. Then

$$\frac{|\partial S|}{|S|} \ge \frac{1}{\operatorname{diam}(S) + 1}$$

Proof: Let $d = \operatorname{diam}(S)$. Let N denote the number of shortest paths of length d + 1 passing through a given vertex. Count those among all such possible paths which intersect S. There are at least |S|N/(d+2) of these. All of these intersect ∂S . But at most $|\partial S|N$ paths intersect the boundary. Hence

$$|\partial S|N \ge \frac{|S|N}{d+2}$$

and so $|\partial S|/|S| \ge 1/(d+2)$.

Exercise 3.5. Improve the above proof to actually prove the theorem as stated (replace d + 2 with d + 1).

Wesley Pegden clarified that the neighborhood sequence of a locally infinite vertex-transitive graph cannot show any pathology: If X is a locally infinite, connected, vertex transitive graph, then $s_0 = 1, s_1 = \infty, \infty, \ldots$, possibly $s_{\text{diam}} = finite$.

A further question: Are all the infinite cardinalities equal, except possibly for the last one? (Answer: yes – Wesley.)

Open question: what about directed vertex-transitive graphs with infinite out-degree?

Exercise 3.6. For all $d \ge 2$, construct an infinite vertex transitive, locally infinite graph of diam = d, such that s_d = finite. (Probably possible)

4 Diameter of S_n

Recall the following result:

Lemma 4.1. For $A, B \subseteq \Omega$, $|\Omega| = n$, and $G \leq \text{Sym}(\Omega)$ transitive, then

$$\operatorname{E}\left(|A \cap B^{\sigma}|\right) = \frac{|A||B|}{n}.$$

In other words, if $\mu(A) := |A|/n$, is the normalized size, then $E(\mu(A \cap B^{\sigma})) = \mu(A)\mu(B)$. **Proof:** For each $x \in \Sigma$, define the indicator variables

$$\vartheta_x = \begin{cases} 1 & \text{if } x \in B^{\sigma} \\ 0 & \text{otherwise} \end{cases}$$

Then

$$|A \cap B^{\sigma}| = \sum_{x \in A} \vartheta_x.$$

By the linearity of expectation,

$$\operatorname{E}\left(|A \cap B^{\sigma}|\right) = \sum_{x \in A} \operatorname{E}(\vartheta_x) = \sum_{x \in A} \frac{|B|}{n} = \frac{|A||B|}{n}.$$

Recall that $\deg[\sigma, \tau] \leq 3|\operatorname{supp}(\sigma) \cap \operatorname{supp}(\tau)|$ (review!).

Claim 4.2. For every $\epsilon > 0$, there exists c such that the following holds. If $G \leq S_n$, transitive, $G = \langle T \rangle$, $\sigma \in G$, $A := \operatorname{supp}(\sigma)$. Then $\exists \tau \in G$ such that $\operatorname{dist}_T(\tau) \leq n^c$ such that $|A \cap A^{\tau}| \leq \frac{|A|^2(1+\epsilon)}{n}$.

Definition 4.3. Let ξ be the position of a particle in Ω , i. e., a random variable whose value is an element of Ω . We say ξ has an ϵ -nearly uniform distribution if

$$(\forall x \in \Omega) \Pr(\xi = x) = \frac{1 \pm \epsilon}{n}.$$

(We will use the shorthand $a = (1 \pm \epsilon)b$ in place of the more cumbersome $a \in [(1 - \epsilon)b, (1 + \epsilon)b]$.)

Definition 4.4 ("Lazy random walk"). Let $G = \langle T \rangle$, where $T = T^{-1}$ and $1 \in T$. Let $\xi_0 \in G$ be the starting point (arbitrary). Define $\xi_{t+1} = \xi_t^{\sigma}$, where $\sigma \in T$ is chosen uniformly at random.

Theorem 4.5. Let $G = \langle T \rangle$, G transitive on Ω , $|\Omega| = n$. Let ξ_t be distributed according to a lazy random walk defined above. Then after $t \leq n^c$ steps, ξ_t is ϵ -nearly uniform.

; From this it follows that a random $\sigma \in G$ can be replaced with a short word in the generators in Lemma 4.1:

Corollary 4.6. Let $G = \langle T \rangle$, G transitive on Ω , $|\Omega| = n$. Let σ be a lazy random word of length $t = n^c$ over T where c is as in the preceding theorem. Let $A, B \subset \Omega$. Then

$$\mathcal{E}\left(|A \cap B^{\sigma}|\right) = \frac{|A||B|}{n}(1 \pm \epsilon).$$

Exercise 4.7. Prove this result by adapting the proof of Lemma 4.1.