Discrete Math, Second Series, 11th Problem Set (August 11)

REU 2003

Instructor: László Babai
Scribes: Mridul Mehta and Tom Hayes

1 Multiply transitive groups

We use $\Omega^{(t)}$ to denote the set of ordered t-tuples of distinct elements of Ω. So if $|\Omega|=n$ then $\left|\Omega^{(t)}\right|=n(n-1) \cdots \cdots(n-t+1)$.

Definition 1.1. A permutation group $G \leq \operatorname{Sym}(\Omega)$ is t-transitive if G acts transitively on $\Omega^{(t)}$. A 2-transitive group is also called doubly transitive; a 3 -transitive group is triply transitive, etc.

Exercise 1.2. If G is t-transitive then $n(n-1) \cdots \cdots(n-t+1)||G|$.
Definition 1.3. The degree of transitivity of G is the largest t such that G is t-transitive.
Exercise 1.4. The degree of transitivity of S_{n} is n; the degree of transitivity of A_{n} is $n-2$.
Exercise 1.5. For $n \geq 4$, the degree of transitivity of D_{n} is 1 .
Exercise 1.6. If Aut X is doubly transitive then $X=K_{n}$ or $\overline{K_{n}}$.
Definition 1.7. $\operatorname{AGL}(n, q)$ is the affine general linear group. This group acts on \mathbb{F}_{q}^{n} by any composition of linear transformations and translations (exercise: one of each suffice). q is the order of the field, n is the dimension.

Exercise 1.8. $\operatorname{AGL}(n, q)$ acts doubly transitively on \mathbb{F}_{q}^{n}.
Exercise 1.9. If 3 points in \mathbb{F}_{q}^{n} are not collinear then they are equivalent under AGL to every other such triple.

Exercise 1.10. AGL $(n, 2)$ is triply transitive. So is AGL $(1,3)$. All others AGL's have degree of transitivity 2 .

Exercise 1.11. For $n>2, \operatorname{AGL}(n, 2)$ is not 4 -transitive.
Exercise 1.12. If G is t-transitive then G_{x} (stabilizer of a point) is $(t-1)$-transitive.

The following remarkable permutation groups were found by Mathieu around 1870. They are called "Mathieu groups;" they are defined as permutation groups of degree indicated in the subscript:

1. M_{24} is 5-transitive
2. M_{23} is 4-transitive
3. M_{12} is 5-transitive
4. M_{11} is 4-transitive

Theorem 1.13. If $G \neq A_{n}, S_{n}$, then the degree of transitivity of G is ≤ 5; in fact the degree of transitivity is ≤ 3 unless $G=M_{i}$ for $i \in\{11,12,23,24\}$.

This is a consequence of the ENORMOUS Theorem.
ENORMOUS Theorem: Classification of finite simple groups. (≈ 1980 or \approx 1995). Proof is 15,000 pages long (human generated), by about 100 authors. There is a "revisionist project" to compress this proof to a more readable 5000 pages ...

This theorem has a large number of important, simply stated consequences. One of them:
Corollary 1.14. Every finite simple group is generated by two elements.

An earlier theorem is this:
Theorem 1.15 (Odd Order Theorem, Feit-Thompson, 1963). Every (nonabelian) finite simple group has even order. Equivalently, every finite group of odd order is solvable.

Exercise 1.16. Prove that these two statements are equivalent.
Remark 1.17. The Feit-Thompson theorem was originally 270 pages, and contributed to Thompson (a former University of Chicago graduate student) earning the Fields medal.

History: Burnside, circa 1900. Structure of doubly-transitive permutation groups via simple groups.

Combined with the Classification of Finite Simple Groups, Curtis, Kantor and Seitz obtained, in a 57-page paper, a classification of doubly-transitive permutation groups (except those with an abelian normal subgroup (called the "affine case")) (1976).

Theorem 1.13 (there are no 6 -transitive permutation groups other than S_{n} and A_{n}) is a corollary to their work. Here is another consequence.

Corollary 1.18 (Schreier's Hypothesis). If G is simple then $\operatorname{Out}(G)$ is solvable.

Jordan proved (circa 1890) that $t<c \log ^{2} n / \log \log n$, where t is the degree of transitivity of any permutation group of degree n other than S_{n} and A_{n}.

Lemma 1.19. $G \leq S_{n}, p_{1}, \ldots, p_{k}$ distinct prime divisors of $|G|$, and $p_{1} \cdots p_{\ell} \geq n^{k}$. Then

$$
(\exists \pi \in G)(2 \leq \operatorname{deg}(\pi) \leq n / k)
$$

Claim 1.20. $(\exists \sigma \in G, \exists i \leq \ell)\left(\#\left\{x \in \Omega: p_{i} \mid\right.\right.$ period of x under $\left.\left.\sigma\right\} \in[2, n / k]\right)$
Proof of Lemma from Claim. Raise σ to power m which is the maximal divisor of n ! relatively prime to p_{i}. So all cycles in σ^{m} have length a power of p_{i} and $\sigma^{m} \neq 1$.

Proof of Claim. Set $Q(x)=\left\{p_{i}: p_{i} \mid\right.$ period of $\left.x\right\}$. Then

$$
(\forall x)\left(\prod_{p_{i} \in Q(x)} p_{i} \leq n\right)
$$

But

$$
\prod_{i=1}^{\ell} p_{i} \geq n^{k}
$$

Taking logarithms,

$$
(\forall x)\left(\sum_{p_{i} \in Q(x)} \log p_{i} \leq \log n\right)
$$

But

$$
\sum_{i=1}^{\ell} \log p_{i} \geq k \log n
$$

What we want to know is: does there exist i such that

$$
\begin{aligned}
& f(i):= \sum_{x: p_{i} \in Q(x)} 1 \leq n / k ? \\
& \begin{aligned}
& \ell \\
& \sum_{i=1} \log p_{i} f(i)=\sum_{i=1}^{\ell} \log p_{i} \sum_{x: p_{i} \in Q(x)} 1 \\
&=\sum_{x} \sum_{i: p_{i} \in Q(x)} \log p_{i} \\
& \leq n \log n
\end{aligned}
\end{aligned}
$$

The weighted average of $f(i)$ is thus

$$
\frac{\sum_{i=1}^{\ell} \log p_{i} f(i)}{\sum_{i=1}^{\ell} \log p_{i}} \leq \frac{n \log n}{k \log n}=\frac{n}{k} .
$$

Thus in particular, there exists i such that $f(i) \leq n / k$.
Lemma 1.21. Suppose G is t-transitive, where $t=p_{1}+\cdots+p_{\ell}$. (Pretend we don't know the Enormous Theorem). Then there exists $\pi \in G$ such that π has cycles of length each p_{i}.

Proof: Since G is t-transitive, we can require that π acts on the t elements by inducing orbits of lengths p_{1}, \ldots, p_{ℓ}.

Let x be such that $\sum_{p<x} p \approx n^{4}$, so that $x \approx 4 \ln n$. Let $t=\sum_{p<4 \ln n} p \approx c \ln ^{2} n / \ln \ln n$ (exercise!). $\prod_{p<x} p \approx \mathrm{e}^{x(1+o(1))}$.
(This ends a significant portion of the proof of Jordan's bound on the degree of transitivity. For the rest, see the B-Seress article handed out.)

2 Estimating Diameters of Cayley Graphs of S_{n} or A_{n}

Let $G=S_{n}$ or $G=A_{n}$. Let T be a generating set. Question: What is the distance (from the identity element, in the Cayley graph $\Gamma(G, T)$) of the element π from Lemma 1.21? I. e., what is the word length of π over T ?

Build the directed graph of the effects of T on $\Omega^{(t)}$. Specifically, for every $\vec{x} \in \Omega^{(t)}$, for every $\sigma \in T$, put an edge from \vec{x} to \vec{x}^{σ}.

Exercise 2.1. Since G acts t-transitively, this graph is strongly connected.
This implies a bound on the word length of $\left|\Omega^{(t)}\right|=n(n-1) \cdots(n-t+1)<n^{t}$.
This ends a significant portion of the proof that the diameter of all Cayley graphs of S_{n} and A_{n} is $<\mathrm{e}^{\sqrt{n \log n}(1+o(1))}$.

3 Possible Pathologies in Neighborhood Sequence of a VertexTransitive Graph X

$S_{i}(x)=\{y \mid \operatorname{dist}(x, y)=i\}$. Let $s_{i}=\left|S_{i}(x)\right| . s_{0}=1, s_{1}=$ degree. s_{i}.
Claim: $s_{4} \geq c s_{3}$, where $c=2 / 13$, if $\operatorname{diam}(X) \geq 7$.
The increase s_{i+1} / s_{i} can be at most the degree minus 1 . But how much can the value go down from one level to the next?

3.1 EXPANSION of vertex-transitive graphs

Let $S \subseteq V(X)$, and let $\partial S=\{x \in V \backslash S \mid(\exists y \in S)(x \sim y)\}$. The isoperimetric ratio is $\frac{|\partial S|}{|S|}$. In a continuous setting, this would be a ratio of surface area to volume.

For a network to be reliable, it should not be possible to disconnect a large part of the network by breaking a small number of edges. In other words, a large isoperimetric ratio is desirable for all subsets.

Theorem 3.1 (Global expansion, Aldous). Let X be a finite connected vertex-transitive graph (undirected). If $|S| \leq|V| / 2$ then

$$
\frac{|\partial S|}{|S|} \geq \frac{2}{2 d+1},
$$

where d is the diameter of X.
Proof: In B-Seress article (Corollary 2.3).
Theorem 3.2 (local expansion). Let X be a finite connected vertex-transitive graph (undirected). If $S \subseteq V$ and $\operatorname{diam}(S)<\operatorname{diam}(V)$. Then

$$
\frac{|\partial S|}{|S|} \geq \frac{2}{\operatorname{diam}(S)+2} .
$$

Proof: This is Theorem 3.2 in the B-Seress article.
Here is another version which does not assume the diameter of S is less than that of V :
Theorem 3.3 (local expansion). Let X be a finite connected vertex-transitive graph (undirected), If $S \subseteq V$, and $|S| \leq|V| / 2$, then

$$
\frac{|\partial S|}{|S|} \geq \frac{2}{2 \operatorname{diam}(S)+1} .
$$

Now we apply these results to neighborhood sequences. By definition, $s_{3}=|\partial B(2, x)|$, where $B(2, x)$ is the ball of radius 2 around x. Now $|B(2, x)|=s_{0}+s_{1}+s_{2}$. So by the last result,

$$
\frac{s_{3}}{s_{0}+s_{1}+s_{2}} \geq \frac{2}{9}
$$

and more generally,

$$
\frac{s_{i}}{s_{0}+\cdots+s_{i-1}} \geq \frac{2}{4 i-3},
$$

assuming either that $s_{0}+s_{1}+s_{2} \leq n / 2$ or $\operatorname{diam}(X) \geq 2 i-1$.

Theorem 3.4. Let G be an infinite, locally finite connected vertex-transitive graph. Then

$$
\frac{|\partial S|}{|S|} \geq \frac{1}{\operatorname{diam}(S)+1} .
$$

Proof: Let $d=\operatorname{diam}(S)$. Let N denote the number of shortest paths of length $d+1$ passing through a given vertex. Count those among all such possible paths which intersect S. There are at least $|S| N /(d+2)$ of these. All of these intersect ∂S. But at most $|\partial S| N$ paths intersect the boundary. Hence

$$
|\partial S| N \geq \frac{|S| N}{d+2}
$$

and so $|\partial S| /|S| \geq 1 /(d+2)$.
Exercise 3.5. Improve the above proof to actually prove the theorem as stated (replace $d+2$ with $d+1$).

Wesley Pegden clarified that the neighborhood sequence of a locally infinite vertex-transitive graph cannot show any pathology: If X is a locally infinite, connected, vertex transitive graph, then $s_{0}=1, s_{1}=\infty, \infty, \ldots$, possibly $s_{\text {diam }}=$ finite .

A further question: Are all the infinite cardinalities equal, except possibly for the last one? (Answer: yes - Wesley.)

Open question: what about directed vertex-transitive graphs with infinite out-degree?
Exercise 3.6. For all $d \geq 2$, construct an infinite vertex transitive, locally infinite graph of diam $=d$, such that $s_{d}=$ finite. (Probably possible)

4 Diameter of S_{n}

Recall the following result:
Lemma 4.1. For $A, B \subseteq \Omega,|\Omega|=n$, and $G \leq \operatorname{Sym}(\Omega)$ transitive, then

$$
\mathrm{E}\left(\left|A \cap B^{\sigma}\right|\right)=\frac{|A||B|}{n}
$$

In other words, if $\mu(A):=|A| / n$, is the normalized size, then $\mathrm{E}\left(\mu\left(A \cap B^{\sigma}\right)\right)=\mu(A) \mu(B)$.
Proof: For each $x \in \Sigma$, define the indicator variables

$$
\vartheta_{x}= \begin{cases}1 & \text { if } x \in B^{\sigma} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\left|A \cap B^{\sigma}\right|=\sum_{x \in A} \vartheta_{x}
$$

By the linearity of expectation,

$$
\mathrm{E}\left(\left|A \cap B^{\sigma}\right|\right)=\sum_{x \in A} \mathrm{E}\left(\vartheta_{x}\right)=\sum_{x \in A} \frac{|B|}{n}=\frac{|A||B|}{n} .
$$

Recall that $\operatorname{deg}[\sigma, \tau] \leq 3|\operatorname{supp}(\sigma) \cap \operatorname{supp}(\tau)|$ (review!).
Claim 4.2. For every $\epsilon>0$, there exists c such that the following holds. If $G \leq S_{n}$, transitive, $G=\langle T\rangle, \sigma \in G, A:=\operatorname{supp}(\sigma)$. Then $\exists \tau \in G$ such that $\operatorname{dist}_{T}(\tau) \leq n^{c}$ such that $\left|A \cap A^{\tau}\right| \leq$ $\frac{|A|^{2}(1+\epsilon)}{n}$.

Definition 4.3. Let ξ be the position of a particle in Ω, i.e., a random variable whose value is an element of Ω. We say ξ has an ϵ-nearly uniform distribution if

$$
(\forall x \in \Omega) \operatorname{Pr}(\xi=x)=\frac{1 \pm \epsilon}{n} .
$$

(We will use the shorthand $a=(1 \pm \epsilon) b$ in place of the more cumbersome $a \in[(1-\epsilon) b,(1+\epsilon) b]$.)
Definition 4.4 ("Lazy random walk"). Let $G=\langle T\rangle$, where $T=T^{-1}$ and $1 \in T$. Let $\xi_{0} \in G$ be the starting point (arbitrary). Define $\xi_{t+1}=\xi_{t}^{\sigma}$, where $\sigma \in T$ is chosen uniformly at random.

Theorem 4.5. Let $G=\langle T\rangle, G$ transitive on $\Omega,|\Omega|=n$. Let ξ_{t} be distributed according to a lazy random walk defined above. Then after $t \leq n^{c}$ steps, ξ_{t} is ϵ-nearly uniform.
¿From this it follows that a random $\sigma \in G$ can be replaced with a short word in the generators in Lemma 4.1:

Corollary 4.6. Let $G=\langle T\rangle, G$ transitive on $\Omega,|\Omega|=n$. Let σ be a lazy random word of length $t=n^{c}$ over T where c is as in the preceding theorem. Let $A, B \subset \Omega$. Then

$$
\mathrm{E}\left(\left|A \cap B^{\sigma}\right|\right)=\frac{|A||B|}{n}(1 \pm \epsilon)
$$

Exercise 4.7. Prove this result by adapting the proof of Lemma 4.1.

