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Instructor: Laszlo Babai
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1 Min Deg

Definition 1.1. The minimum degree min deg(G) of a permutation group G is the minimum
of the degrees of the nonidentity elements of G.

For example, min deg(Sn) = 2, min deg(An) = 3, min deg(Dn) is n−2 if n is even and n−1
if n is odd. AGL(d, q) acts on Fqd, which has n = qd elements, has min deg = qd − qd−1 =
n(1− 1

q ) ≥ n
2 .

Exercise 1.2. (A. Bochert c. 1895) If G < Sn is doubly transitive and not a giant (not An or
Sn), then min deg(G) ≥ n

4 − 2.

Theorem 1.3. (Jordan) If G < Sn is primitive, then min deg(G)→∞ as a function of n.

For example, Sk < Sn with n =
(
k
2

)
∼ k2

2 acting on two-element subsets, is primitive. The
degree of a transposition in this induced action is 2(k−2) and min deg = 2(k−2) ∼

√
8n. The

classification of finite simple groups can be used to show that this is minimal among primitive
permutation groups of degree n, but elementary arguments already give the right order of
magnitude; they show that the minimum degree of a primitive permutation group must be at
least c

√
n.

2 Diameter of Sn

If A ⊂ Ω = {1, . . . , n}, then set µ(A) = |A|
n , the normalized size of A. If we have a permutation

σk ∈ Sn with support A and we wish smaller support, then we can use σk+1 = [σk, στk ], which
has support at most 3|A ∩ Aτ |. If µ(A) = p then E(µ(A ∩ Aτ )) = p2, with τ random in a
transitive group. Thus replacing σ by [σ, στ ] changes our proportion from p to 3p2. Iterating,
we get about suppσk = (3p)2k , which quickly tends to 0 if 3p < 1. If 3p is bounded away from
1, then in about log log n steps this will hit 1

n .

1



If σk+1 = [σk, στk ] and bk is the word length of σk, then bk+1 = 4bk+nc, as the random τ has
word length nc. This gives bk ∼ nc5k = nc logc n, which is “quasi-polynomial” and certainly
bounded by nc+ε.

But there is a danger that A and Aτ will commute (especialy when |A| is small; then A
and Aτ are likely to be disjoint).

Exercise 2.1. With A = suppσ, suppose xσ = y, x′ = xτ
−1 ∈ A, and y′ = yτ

−1
/∈ A. Then

[σ, στ ] 6= 1.

Thus our goal is to obtain τ such that τ−1 keeps x in the support, sends y = xσ out
of the support, and makes A ∩ Aτ small. This requires triple transitivity. We do a random
walk on Ω(3), the space of ordered triples with no repetition, with edges labeled by generators
of our group. This graph is strongly connected by triple transitivity. After N c (now N =
n(n − 1)(n − 2)) steps, the distribution of vertices will be nearly random: a random word of
length N c sends a given vertex to any other vertex with probability 1±ε

N . With probability
1±ε

n(n−1) it sends a given x′ (in A) to x and a given y′ (not in A) to y. Conditioned on this, it
still sends any other z′ to z with probability 1±ε

n−2 , so by linearity of expectation, we still have

the expected value of |A∩Aτ |, conditioned on x′ 7→ x and y′ 7→ y as 1
n + (|A|−2)2

n−2 (1± ε), which
means that the proportion of Ω in the overlap is approximately the square of the proportion
of A.

3 Markov Chains

Read the handout “Finite Markov Chains.”

Definition 3.1. A stochastic matrix is a matrix with nonnegative entries and row sums of 1.
A doubly stochastic matrix is a matrix A such that A and Atr (transpose) are both stochastic.
A stochastic matrix is ergodic if it (precisely, the digraph of its nonzero entries) is strongly
connected and aperiodic.

Exercise 3.2. An eigenvalue of a stochastic matrix has norm at most 1.

Exercise 3.3. If a stochastic matrix is strongly connected, show

1. The geometric multiplicity of 1 is 1.

2. Let its period be r and ω ∈ C with ωr = 1. If λ is an eigenvalue, then so is ωλ.

Exercise+ 3.4. If a stochastic matrix is ergodic, then the algebraic multiplicity of the eigen-
value 1 is 1 and all other eigenvalues have norm strictly less than 1. (This is almost equivalent
to the following theorem.)

Theorem 3.5 (Perron–Frobenius). If T is an ergodic matrix, then T∞ = limk→∞ T
k ex-

ists.
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Observation 3.6. Since TT∞ = T∞, we must have Tx = x for x a column of T , but since
the geometric multiplicity is 1, this eigenvector is a multiple of the all 1s vector. Thus all rows
are equal; they are the unique stationary distribution π.

Exercise 3.7. If a Markov chain is ergodic, then for any initial distribution q0, limk→∞ q0T
k =

π, the stationary distribution.

Exercise 3.8. If T is ergodic and doubly stochastic, then the stationary distribution is uni-
form.

One way to guarantee that T is doubly stochastic is to ask T = T tr. A walk on a Cayley
graph is always doubly stochastic. Having the generating set S be closed under inverses makes
T = T tr, but we do that only to invoke the Laundau-Odlyzko theorem.

Theorem 3.9 (Landau–Odlyzko). A random walk on a regular undirected graph of degree
∆, diameter d and n vertices has an eigenvalue gap

γ = 1−max
λ6=1
|λ| ≥ c

n∆d

The eigenvalue gap tells us about the rate of convergence to the stationary distribution.
This is always true, but easier if T is symmetric. Then the spectral theorem gives us an
orthonormal basis e1, . . . , en, with eiT = λiei. for T . We can choose e1 = (1, . . . , 1)/

√
n. Then

for C the rotation that sends those eigenvectors to the standard basis, C−1TC is diagonal, with
entries its eigenvalues. This “separation of coordinates” makes raising the matrix to powers
easy: C−1T kC = (C−1TC)k, a diagonal matrix with entries λki . This exponentially decays to
the diagonal matrix with entries (1, 0, . . . , 0). Conjugating by the inverse of C then gives T∞.

To measure convergence of T k to T∞, we need a measure of the size of a matrix and apply
it to T k − T∞, which conjugated by C gives a diagonal matrix with entries (0, λ2, . . . , λn).

Definition 3.10. The operator norm or matrix norm ‖A‖ of a matrix A is max
x 6=0

‖xA‖
‖x‖ , where

the norm ‖x‖ of vectors is the `2-norm:
√∑

x2
i . The Frobenius norm ‖A‖F is the `2 norm on

the entries:
√∑

a2
ij .

Exercise 3.11. ‖A‖ ≤ ‖A‖F ≤
√
n‖A‖ (or is it n‖A‖?). The all 1s matrix and the identity

matrix show that these are sharp.

Exercise 3.12. If A = Atr then ‖A‖ = maxλ |λ|. Hint. Use the spectral theorem.

Exercise 3.13. If C is an orthogonal matrix, ‖AC‖ = ‖CA‖ = ‖A‖.

Thus ‖T k − T∞‖ = ‖C−1(T k − T∞)‖ = λk2 = (1 − γ)k < e−γk. So for ‖T k − T∞‖ < ε it
suffices to have k ≥ 1

γ ln 1
ε .
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Now we need to relate this bound on the operator norm to what we care about: the
deviation of the distribution from uniform,

∑n
j=1

∣∣∣p(k)
ij −

1
n

∣∣∣.
Set ε = δ

n and A = T k − T∞. If ‖A‖ < ε, then ‖A‖2F < n2ε2 < δ, so for all i and
j, |Aij | < nε = δ. So to be within δ of a uniform distribution, we need ‖A‖ < ε = δ

n ,

which we can achieve with k >
ln( 1

ε
)

γ ∼ 2 lnn
γ (since δ is a constant) and by Landau–Odlyzko,

γ > c
N∆d > cn−7 (N = n3, ∆ ≤ n, d ≤ n3), so we can let k be O(n7), which leads to a similar

diamater and we have proved

Theorem 3.14. If Sn = 〈S〉 and one of the generators has degree less than .3n then the
diameter of the Cayley graph is O(n7 logc n).

Theorem 3.15. Every chain of subgroups in Sn has length at less than 2n.

Exercise 3.16. Use the above theorem to show that a minimal set of generators of Sn has
fewer than 2n elements and thus ∆ < 2n.

4 Ramsey Theory

Definition 4.1. A subset S ⊂ G is product-free if it contains no solutions to xy = z. It is
triangle-free if it contains no solution to xyz = 1, with x, y, z not all the same. Let α(G) be
the size of the largest triangle-free subset of G. Let α̃(G) = α(G)

|G| .

We showed that for abelian groups we could find a product-free subset of size 2
7 |G|. We

cannot achieve such a constant fraction in a triangle-free subset. That is, there exists a sequence
of groups such that α̃(G)→ 0, but the instructor can only show that it goes to 0 very slowly.

The sequence of groups Gk = Z
k
3 model higher-dimensional versions of the Set game. α(Gk)

is the number of cards that can contain no Set.

Exercise 4.2. L = lim k
√
α(Gk) exists. 2 ≤ L ≤ 3.

Exercise 4.3. L ≥ 4
√

20. Hint. Find 20 Set cards without a Set.

Conjecture 4.4. L = 3.

Theorem 4.5 (van der Waerden). For all k and r, if we color the natural numbers with r
colors, we can find a monochromatic arithmetic progression of k terms.

Exercise 4.6. This is equivalent to the claim that for all k and r, there exists N such that we
can color the first N natural numbers with r colors such that there exists a k-term arithmetic
progression.

Theorem 4.7 (Szemerédi, 1974). For all k, ε, there exists N such that for any S ⊂ [N ]
with |S| ≥ εN , S contains a k-term arithmetic progression.
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This theorem, conjectured by Erdős-Turán and sometimes called the “density version of van
der Waerden’s theorem” was proved by Szemerédi using a Ramsey-type theorem for graphs
(The Szemerédi Lemma). A noteworthy later proof due to Furstenberg uses a fixed-point
theorem and ergodic theory.

Definition 4.8. An ordered collection of t elements x1, . . . , xt of [t]N is a combinatorial line
if for each of the N coordinates, the t elements all have the same value x1i = x2i = . . . = xti
or xji = j for all j.

Theorem 4.9 (Hales–Jewett). For all t and r, there exists N sucht if we color [t]N by r
colors, there exists a monochromatic combinatorial line.

This is called the “combinatorial essence” of van der Waerden’s theorem. Also, there are two
more parameters: it should be that we color the a-dimensional spaces and fine a b-dimensional
space, all of whose a-dimensional subspaces are the same color.

Exercise 4.10. Use Hales–Jewett to prove van der Waerden

Exercise 4.11. State the density version of Hales–Jewett, proved by Furstenberg and Katznel-
son.

Exercise 4.12. Use Furstenberg–Katznelson to prove that α̃(Zk3)→ 0.
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