
Discrete Math, 13th Problem Set (August 13)

REU 2003

Instructor: Laszlo Babai
Scribes: Tom Hayes and Ben Wieland

1 Decision tree complexity

Definition 1.1. A boolean function in n variables is a function f : {0, 1}n → {0, 1}. Boolean
functions are also referred to as “properties.”

Definition 1.2. A property (boolean function) of several boolean variables is monotone in-
creasing if its truth on an input implies its truth on any input in which at least the same
variables are true (but some of the falses may have become true), i. e., if f(x1, . . . , xn) ≥
f(y1, . . . , yn) whenever (∀i)(xi ≥ yi). A property is monotone if either it or its negation is
monotone increasing.

“Graph properties” are boolean functions of the
(
v
2

)
boolean variables expressing adjacency

(v is the number of vertices); such a function must take the same value on isomorphic graphs,
so the function must be invariant under the group S

(2)
v , the induced action of Sv on the

(
n
2

)
pairs. Connectedness is a monotone increasing property. Planarity is monotone decreasing.

Definition 1.3. A decision tree is an algorithm for computing a function of an unknown input.
Each vertex of the tree is labeled by a variable and the branches from that node are labeled by
the possible values of the variable. The leaves are labeled by the output of the function. The
process starts at the root, knowing nothing, works down the tree, choosing to learn the values
of some of the variables based on those already known and eventually reaches a decision. The
decision tree complexity of a function is the minimum depth of a decision tree that computes
that function. A property is evasive if its decision tree complexity is equal to the number of
variables.

Exercise 1.4. The planarity of a graph is evasive.

Conjecture 1.5. All nontrivial (i. e., nonconstant) monotone graph properties are evasive.

Theorem 1.6 (Rivest-Vuillemin). A nontrivial monotone graph property has decision tree
complexity at least v2/16 (a constant fraction of the maximum).
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Exercise 1.7. Find a nontrivial graph property with decision tree complexity O(v). (Note
that such a property cannot be monotone.)

Theorem 1.8 (Rivest-Vuillemin). If q is a prime power, and f : {0, 1}q → {0, 1} is a
boolean function that is invariant under the action of a transitive permutation group acting
on the q variables, and f(0) 6= f(1), then f is evasive. (No assumption of monotonicity is
needed.)

Conjecture 1.9. A monotone function invariant under a transitive group acting on the vari-
ables is evasive.

Conjecture 1.5 is a special case of this. The group in that case is primitive (S(2)
v ). The case

of other primitive groups are also of interest.

Proof of the Rivest-Vuillemin Theorem was given in class for a prime number of variables.

Exercise 1.10. Extend the proof in class to the case of a prime power number of variables.
Hint. Recall (and prove) the earlier exercise that if G is a transitive permutation group acting
on a set of size pk then its Sylow p-subgroup is also transitive.

2 Large primitive groups

For large n, the largest four primitive permutation groups are Sn and An, of order about n!,
and S

(2)
k (for n =

(
k
2

)
) and Sk o S2 (for n = k2), of order about ec

√
n logn. The classification of

finite simple groups allows us to show that these are the largest and even to list the largest
down to size about elog2 n. We can do reasonably well with elementary means.

Theorem 2.1. Assume G < Sn, An ≮ G, and G is primitive.

1. (Bochert c.1890) |G| ≤ n!
(n+1)/2)! ≈ e

n
2

logn.

2. (Wielandt, Praeger-Saxl, 1980) |G| < 4n.

3. (Babai, 1981) If G is not doubly transitive, |G| < e4
√
n log2 n (using almost only graph

theory).

Exercise 2.2. Doubly transitive implies primitive.

The following theorem si proved using the classification of finite simple groups; one can get
close by elementary means.

Theorem 2.3. If G ≤ Sn, G 6≥ An is doubly transitive then |G| < n1+log2 n.

Exercise 2.4. Verify this bound for PSL and AGL, acting on projective and affine spaces,
resp.
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Remarks about symmetry and regularity: symmerty conditions are given in terms of au-
tomorphisms; regularity conditions in terms of numerical parameters. Symmetry condition
imply regularity conditions (e. g., vertex-transitivity is a symmetry condition, which implies
that the graph is regular, a regularity condition). The converse is seldom true. We shall define
regularity conditions on a family of edge-colored digraphs which capture some combinatorial
consequences of primitive group action. Using this translation, we shall prove a combinatorial
result which implies a nearly optimal upper bound on the order of uniprimitive (primitive but
not doubly transitive) permutation groups.

Picture of D6. R0 = ∆ = {(x, x) | x ∈ Ω}, diagonal. Ω× Ω = R0 ∪R1 ∪ · · · ∪Rr−1. r =#
colors = # orbits of G on Ω×Ω. D6 has rank 4, r = 4. In this case, all orbitals are self-paired.

Definition 2.5. An orbital Γ of a permutation group G ≤ Sym(Ω) is an orbit of G on the set
of ordered pairs (Γ ⊂ Ω × Ω). Γ is self-paired when Γ = Γ−1 (i. e., for (x, y) ∈ Γ there exists
σ ∈ G such that xσ = y and yσ = x). The rank r of a permutation group is the number of its
orbitals.

Exercise 2.6. If G is doubly transitive, then rk(G) = 2. What do the two classes correspond
to?

Definition 2.7. COHERENT CONFIGURATION of rank r:
X = (Ω;R0, . . . , Rr−1), Ri ⊆ Ω× Ω.
Ω× Ω = R0∪̇ . . . ∪̇Rr−1.
Xi = (Ω, Ri), i’th color digraph, called a constituent digraph. The color of a pair x, y is defined
as c(x, y) = i if (x, y) ∈ Ri.
To be coherent, the following 3 axioms must be satisfied:

A1: The diagonal is ∆ = R0∪̇ . . . ∪̇Ri0−1. Equivalently, c(x, x) = c(y, z)⇒ y = z.

A2: (∀i)(∃j)(Rj = R−1
i ). Terminology: Ri is self-paired if Ri = R−1

i , i. e., Xi is undirected.

A3: (∃pi,j,k)(∀(x, y) ∈ Ri)(#{z | c(x, z) = j, c(z, y) = k} = pi,j,k)

Definition 2.8. For G ≤ Sym(Ω), X(G) := (Ω; orbitals). We refer to these as “the group
case.”

Exercise 2.9. X(G) is a coherent configuration.

Exercise 2.10. G ≤ Aut(X(G)), the group of color-preserving permutations. π ∈ Aut(X) if
(∀x, y)(c(x, y) = c(xπ, yπ))

Remark 2.11. There exist coherent configurations without a group. In fact, there are expo-
nentially many rank-3 coherent configurations with no automorphisms.

Well, we always lose in translation. The question is how much.
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Exercise 2.12. The number of x→ · · · → y walks of a given color-composition only depends
on c(x, y). E. g., how many walks from x to y of length 4 are colored red, blue, purple, blue
(in order)?

Definition 2.13. X is homogeneous if R0 = ∆ (i. e., (∀x, y)(c(x, x) = c(y, y))).

Exercise 2.14. X(G) is homogeneous ⇐⇒ G is transitive.

Exercise 2.15. If X is homogeneous, then every weak component of each Xi is strongly con-
nected.

Exercise 2.16. If X is homogeneous, then (∀x)(∀i)(in-degreei(x) = out-degreei(x) = ρi (ρi
does not depend on x). So Xi is Eulerian, and indeed is regular.

By the way,
∑r−1

i=0 ρi = n, since every vertex is connected to every other (including itself)
in the graph ∪Xi, whose edge set contains all n2 ordered pairs.

Definition 2.17. X is a primitive coherent configuration if X is homogeneous and ALL con-
stituent digraphs Xi, i ≥ 1 are connected.

Exercise 2.18. X(G) is primitive ⇐⇒ G is primitive. (DO!!!)

Definition 2.19. X is uniprimitive coherent configuration if X is primitive and rank ≥ 3.

Exercise 2.20. X is uniprimitive⇐⇒ G is uniprimitive (primitive but not doubly transitive).

G ≤ Sym(Ω), Ψ ⊆ Ω. Look at the pointwise stabilizer, GΨ, = ∩x∈ΨGx. If GΨ = {1}, then
|G| ≤ n|Ψ|, in fact |G| ≤ n(n− 1) . . . (n− |Ψ|+ 1). Call such a Ψ a “fixing set.”

We shall prove, using only elementary graph theoretic arguments, that

Theorem 2.21. If G is uniprimitive, then |G| < e4
√
n(lnn)2

.

Lemma 2.22. If G is uniprimitive, then (∃Ψ ⊆ Ω)(|Ψ| ≤ 4
√
n lnn and GΨ = {1}).

Examples: How large is the smallest fixing set for various classes of permutation groups?

Definition 2.23. z distinguishes x and y if c(x, z) 6= c(y, z). D(x, y) = {z | c(x, z) 6= c(y, z)}
is the distinguishing set for x, y.

Exercise 2.24. If X = X(G) and z ∈ D(x, y), then x, y are not in the same orbit of Gz.
(Obvious, because the group preserves the colors.)

Definition 2.25. A distinguishing set of X is any set Ψ ⊆ Ω such that (∀x 6= y)(Ψ∩D(x, y) 6=
∅). In other words, for every pair x, y, Ψ contains an element which distinguishes them.

Exercise 2.26. For X = X(G), if Ψ is a distinguishing set, then Ψ is a fixing set for G.
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Theorem 2.21 will follow from the following result.

Theorem 2.27. If X is a uniprimitive coherent configuration, then there exists a distinguish-
ing set Ψ such that |Ψ| < 4

√
n lnn.

This will be an immediate consequence of the following. From now on, let us always assume
X is a uniprimitive coherent configuration.

Theorem 2.28 (Main technical theorem). For every x, y, |D(x, y)| ≥
√
n/2.

Proof: [Main technical theorem ⇒ Theorem 2.27]. Pick u1, . . . , um at random, and hope that
we picked enough to hit each D(x, y).

Pr(D(x, y) not hit) =
(

1− |D(x, y)|
n

)m
≤ exp

(
−|D(x, y)|m

n

)
.

Hence, by the Union Bound,

Pr((∃x, y)(D(x, y) not hit)) <

(
n

2

)
exp

(
−Dminm

n

)
< exp

(
−Dminm

n
+ 2 lnn

)
,

where Dmin = minx 6=y |D(x, y)|.

For this, it is sufficient to show

exp
(
Dminm

n
+ 2 lnn

)
≤ 1

or equivalently

Dminm

n
+ 2 lnn ≤ 0

which follows from

m ≥ 2n lnn
Dmin

≤ 4
√
n ln(n) =: m.

The last inequality used the Main technical theorem, which lower bounds Dmin.
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3 Min size of distinguishing sets

We spend the rest of this class with proving the Main technical theorem above.

Exercise 3.1. |D(x, y)| depends only on c(x, y).

Notation 3.2. Let D(i) := |D(x, y)|, where i = c(x, y). Xi = (Ω;Ri). Let X ′i = (Ω;Ri∪R−1
i )

be the corresponding undirected graph.

Lemma 3.3. For i ≥ 1, if X ′i is not the complete graph, then diam(X ′i) = 2.

Proof: There exist x, y at distance 2 in X ′i, because there exist x, z not adjacent in X ′i, but
X ′i is connected by primitivity, and so the third vertex of any minimal x, z-path is at distance
2 from x.

Now take any u, v ∈ Ω, not adjacent in X ′i. Need to show: dist
X′i

(u, v) ≥ 2. Need to show:

u, v have a common neighbor in X ′i. c(u, v) ∈ {i, i−1}. Implies # common neighbors of u, v in
X ′i is the same as for x, y.

Exercise 3.4. If X is a regular graph of degree ρ and diameter = 2, then ρ ≥
√
n− 1.

Exercise+ 3.5. ρ =
√
n− 1 under the above conditions implies ρ ∈ {2, 3, 7, 57}. Hint. Figure

out a connection to girth. This exercise is only for students who took the first half of this
course.

Lemma 3.6. (∀i ≥ 1)(ρi ≤ n− 1−
√
n− 1).

Proof: If X ′i is the complete graph, then ρi = (n − 1)/2 and we are done. Otherwise, use
Lemma 3.3 and Exercise 3.4.

Notation 3.7. We shal consider the average distinguishing number

D =

∑
x6=y |D(x, y)|
n(n− 1)

.

Also, let ρmax := maxi ρi.

Lemma 3.8. D ≥ n− ρmax ≥
√
n− 1 + 1 ∼

√
n.

Proof: Count the number of triples (x, y, z) such that z /∈ D(x, y). This means c(x, z) =
c(y, z) = ρi for some i. This is

n−D =
∑r−1

i=1 ρi(ρi − 1)
n− 1

≤ ρmax

∑r−1
i=1 (ρi − 1)
n− 1

< ρmax.
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Lemma 3.9. D(i) ≤ distX′j (i)D(j).

Proof: Let x0, x1, . . . , xd be a in X ′j path where c(x0, xd) = i. D(x0, xd) ⊆ ∪di=1D(xi−1, xi).
The size on the left side is D(i); all stes on the right side have size D(j).

Notation 3.10. diam(i) := diam(X ′i).

Corollary 3.11. D(j) ≥ D/diam(j).

Proof: Need: D ≤ diam(j)D(j). Pick i such that D(i) ≥ D. Then distX′j (i) ≤ diam(X ′j) =
diam(j).

Corollary 3.12. If diam(i) = 2 then D(i) &
√
n/2.

Lemma 3.13 (Zemlyachenko). If diam(i) ≥ 3 then D(i) ≥ ρi/3.

Proof: Let x, y, z, w be a shortest path from z to w in X ′i. Let X ′i(x) = { neighbors of x in
color i }.

Claim 3.14. X ′i(x) ⊆ D(x,w) and D(i) ≥ |D(x,w)|/3. The Lemma is immediate from the
following claim:

The claim is easy: if some X ′i-neighbor u of x did not distinguish x from w then c(u,w) =
c(u, x) = i±, so x− u−w would be an X ′i-path of length 2, contradicting the assumption that
disti(x,w) = 3. Now |D(x,w)| ≤ 3D(i) by Lemma 3.9.

Exercise 3.15. Suppose there exists an edge of color h between Xi(x) and Xj(x). Then there
exist at least max(ρi, ρj) such edges.

Lemma 3.16. (∀h 6= 0)(∀x)(x distinguishes at least n− 1 pairs of color h).

Proof: Let us construct a graph H using the set V = {0, 1, . . . , r− 1} of colors as vertex set.
Let w(i, j) be the number of edges of color h or h−1 from Xi(x) to Xj(x). Put an edge between
i and j if w(i, j) 6= 0; assign weight w(i, j) to this edge. It follows from Exerciseconn-ex that
if there is an {i, j} edge then w(i, j) ≥ max(ρi, ρj).

H is a connected graph. This follows from the primitivity of X (why?). Let T be a spanning
tree of H. Let us orient T away from vertex (color) 0. x distinguishes ≥ τ edges of color h,
where τ := total weight of edges of T .

τ =
∑
i→j

w(i, j) ≥
∑
i→j

ρj =
r−1∑
i=1

ρj = n− 1.

Corollary 3.17. D(i) ≥ (n− 1)/ρi.
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Proof: Count the triples N = |{(x, y, z) | c(x, y) = i, z ∈ D(x, y)}| in two different ways.

Count by (x, y). The number of pairs (x, y) such that c(x, y) = i is nρi. For each such pair,
there are D(i) choices for z. Thus,

N = nρiD(i).

Now count by z. There are n choices for z. Given z, there are at least n − 1 pairs (x, y)
distinguished by z. Thus

N = nρiD(i) ≥ n(n− 1),

and so

ρiD(i) ≥ n− 1.

Corollary 3.18. If diam(i) ≥ 3 then D(i) &
√
n/3.

Proof: Multiplying the expressions for D(i) from Lemma 3.13 and Corollary 3.17, we get

D(i)2 ≥ ρi
3
· n− 1

ρi
=
n− 1

3
.

Thus

D(i) ≥
√
n− 1

3
∼
√
n√
3
.

This result, combined with Corollary 3.12, completes the proof of the Main Theorem.

This proof is based on L. Babai: “On the order of uniprimitive permutation groups,” Annals
of Math. 113 (1981), 553–568, as simplified by N. Zemlyachenko a year later.

Conjecture 3.19. For uniprimitive coherent configurations, Dmin = Ω(n− ρmax). (Note that
this is true for the average rather than the minimum size of distinguishing sets by Lemma 3.8.)

Another open question:

Conjecture 3.20. For primitive coherent configurations of rank r ≥ 4, Dmin = Ω(n1−1/(r−1))).
Or at least Dmin = Ω(n1−f(r)), where f(r)→ 0.

Note that the first statement is true for r = 2.
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