
Discrete Math, Second series, 2nd Problem Set (July 21)

REU 2003

Instructor: Laszlo Babai
Scribe: Mridul Mehta

Definition 0.1. A group is a set G with a binary operation G×G→ G denoted by ‘·’ or ‘+’
depending on context, satisfying:

1. (∀ x, y ∈ G)(∃! z ∈ G)(x · y = z)

2. (∀ x, y, z ∈ G)((x · y) · z = x · (y · z))

3. (∃ 1G)(∀ x ∈ G)(x · 1G = 1G · x = 1G)

4. (∀ x ∈ G)(∃ x−1 ∈ G)(x · x−1 = x−1 · x = 1G)

Definition 0.2. We say that H ⊆ G is a subgroup of G (written H ≤ G) if

1. 1G ∈ H

2. (∀ x, y ∈ H)(x · y ∈ H)

3. (∀ x ∈ H)(x−1 ∈ H)

Exercise 0.3. G has no subgroups other than {1} and G ⇐⇒ |G| = 1 or |G| is prime.

Definition 0.4. The order of a group is the number of elements it contains, and is denoted
|G|.

Theorem 0.5 (Lagrange). If G is finite and H ≤ G, then |H| divides |G|.

Remark 0.6. The union of two subgroups is in general, not a subgroup. (Consider 2Z and
3Z inside (Z,+).)

Exercise 0.7. If H,K ≤ G, and H ∪K ≤ G, then H ⊆ K or K ⊆ H.

Exercise 0.8. Determine all (finite or infinite) groups for which the union any two of sub-
groups is a subgroup.

Exercise 0.9. The intersection of any set of subgroups is a subgroup.
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Definition 0.10. Subgroup generated by a subset S ⊆ G (written 〈S〉). There are two
equivalent definitions:

1. 〈S〉 =
⋂

S⊆H≤G
H

2. 〈S〉 = { all products of generators and their inverses }

Remark 0.11. By convention, we have 〈∅〉 = {1}.

Exercise 0.12. Prove that the two definitions of 〈S〉 are equivalent.

A graph is an object with a given set of vertices (usually denoted V ), which are connected by
edges (denoted E). We usually denote the graph by (V,E). A digraph is one in which the
edges are directed (so that E ⊆ V × V ).

A Cayley graph Γ of a group G with respect to a given set of generators S ⊆ G is the digraph
Γ(G,S) = (G,ES), where ES = {(g, sg) : g ∈ G, s ∈ S}.

Example 0.13. G = (Z,+) = 〈1〉. The Cayley graph is:

-1                  0                  1                  2  

For example, (2, 3) ∈ E because 2 + 1 = 3 and 1 ∈ S.

Definition 0.14. A group G is said to be cyclic if ∃ a ∈ G such that G = 〈a〉.

Definition 0.15. The order of an element x ∈ G (denoted by ord(x)) isdefined as the order
of the cyclic subgroup generated by x i.e. ord(x) = |〈x〉|. (So ord(x) = k ⇒ 1, x, . . . , xk−1 are
distinct and xk = 1. Moreover, xi = xj ⇐⇒ i ≡ j mod k.)

Exercise 0.16. Suppose G is a abelian group (i.e. operation is commutative). If x, y ∈ G
such that ord(x) = a and ord(y) = b, then prove that g.c.d. (a, b) = 1⇒ ord(xy) = ab.

Exercise 0.17. Suppose G is a abelian group. If x, y ∈ G such that ord(x) = a and ord(y) = b,
then prove that

l.c.m. (a, b)
g.c.d. (a, b)

| ord(xy) | l.c.m. (a, b).

The Dihedral group of order 2n, denoted Dn, is the group of symmetries (rotations and
reflections) of the regular n-gon in the plane.

Example 0.18. |D3| = 6 (group of symmetries of an equilateral triangle in the plane). If we
denote the reflections by τ1, τ2, τ3 and the rotations by 1, ρ, ρ2 (ρ3 = 1), then D3 = 〈ρ, τ1〉.
Consequently its Cayley graph is:
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1                                                 ρ

τ                                                                                                 τρ

ρτ

2ρ

The edges comprising the triangles correspond to multiplication by ρ while the two-way arrows
correspond to multiplication by τ (since τ has order 2). Following a directed edge in the
opposite direction corresponds to multiplication by the inverse of the element. Each path
corresponds to multiplying by the generators and/or their inverses in a particular order.

“Relation chasing” Two different paths between the same pair of vertices give rise to two
different expressions for the same group element as products of generators and their inverses. In
particular, closed walks specify products of generators which equal the identity. Such products
are called relations among the generators. For example, the inner triangle, from the identity
to itself, shows the relation ρ3 = 1. The walk of length 2 from 1 to τ to 1 shows that τ2 = 1.
Traversing the bottom quadrilateral clockwise shows the relation τρτρ = 1. A more complex
relation that is immediate from the diagram is ρτρ2τρ = 1.

Definition 0.19. A homomorphism from a group G to a group H is a map f : G → H
such that f(xy) = f(x)f(y) for all x, y ∈ G.

Remark 0.20. 1. f(1G) = 1H .

2. f(x−1) = f(x)−1.

3. f−1(1H) ≤ G. The subgroup f−1(1H) is called the kernel of f , denoted ker(f).

For any g ∈ G, “conjugation by g” means a map G → G given by x 7→ g−1xg =: xg. Note
that ker(f) is always closed under conjugation.

Definition 0.21. A subgroup N ≤ G is called a normal subgroup if it is closed under
conjugation, i. e., (∀ g ∈ G)(Ng = N). We write N / G. (Here Ng = {ng : n ∈ N}.)

Definition 0.22. We say that a map f : G→ H is an isomorphism if f is a homomorphism
that is both injective (one-to-one) and surjective (onto). We say G and H are isomorphic
(notation: G ∼= H) if ∃f : G→ H isomorphism.
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Definition 0.23. An automorphism of a group G is an isomorphism from G→ G.

Exercise 0.24. Conjugation by any g ∈ G (x 7→ xg) is an automorphism of G. Such auto-
morphisms (induced by conjugation) are known as inner automorphisms.

The automorphisms of G form a group under composition, called Aut(G).

Example 0.25. Aut(Z,+) ∼= (Z2,+).

Exercise 0.26. Prove that (Z×n , ·) is a group. This is the multiplicative group of integers
modulo n that are relatively prime to n. The order of this group is φ(n) (Euler’s phi function)
see Basic Number Theory handout, Section 4.2.

Example 0.27. Aut(Zn,+) ∼= (Z×n , · ).

Exercise 0.28. ord(k) (in (Zn,+)) = n
g.c.d. (k,n) .

Exercise 0.29. ord(gk) (in group G) = ord(g)
g.c.d. (k,ord(g)) .

Exercise+ 0.30. The group (Z×n , · ) is cyclic if and only if

• n is prime or

• n = pk for some odd prime p or

• n = 2pk for some odd prime p.

Definition 0.31. Direct Product. Given groups G, H, their Cartesian product G × H =
{(g, h) : g ∈ G, h ∈ H} is a group under componentwise multiplication.

Example 0.32. Z2 × Z2 = {1, a, b, c}, where a2 = b2 = c2 = 1, ab = c, ac = b, bc = a, and the
group is abelian. This is known as Klein’s 4-group and is usually denoted by V4.

Exercise 0.33. Prove that Z×8 ∼= V4.

Exercise 0.34. The only groups (up to isomorphism) of order 4 are Z4 and V4.

Exercise 0.35. Find all n such that Z×n ∼= V4.

Definition 0.36. The center of a group G, is defined to be Z(G) = {a ∈ G : (∀g ∈ G)(ga =
ag)}.

Exercise 0.37. Find Z(Dn).

We consider the map from G → Aut(G) given by g 7→ {x 7→ xg}. This is a homomorphism
of groups. The kernel of this map is Z(G). The image of this map is the group of inner
automorphisms of G, denoted by Inn(G).
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Exercise 0.38. Prove that G/Z(G) ∼= Inn(G).

Exercise 0.39. Prove that Inn(G) is a normal subgroup of Aut(G).

The quotient Aut(G)/Inn(G) is also denoted by Out(G), and referred to as the outer auto-
morphism group of G.

Definition 0.40. Symmetric group of degree n. This is the group of all permutations of
a set of n elements under composition. It is usually denoted by Sn. Clearly, |Sn| = n!.

Remark 0.41. The group Sn has an important subgroup An, known as the alternating
group of degree n which consists of the even permutations of degree n. For n ≥ 2, |An| = n!

2 .

Exercise 0.42. Prove that Z(Sn) = {1} for n ≥ 3 and Z(An) = {1} for n ≥ 4.

Definition 0.43. Bipartite graph. The bipartite graph Kp,q is a graph with p+ q vertices
partitioned into two sets of p and q vertices respectively such that no two vertices in the same
set are adjacent, while every pair of vertices not in the same set are adjacent.

Example 0.44. The bipartite graph K2,3 is:

Exercise 0.45. Suppose G = 〈S〉, where S is minimal in the sense that (∀ T ( S)(〈T 〉 6= G).
Prove that Γ(G,S ∪ S−1) + K3,5.
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