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Definition 0.1. Suppose G is a group and H ≤ G. The sets {H · a : a ∈ G} are the right
cosets of H in G. Left cosets are defined analogously.

The right cosets of H in G partition G into disjoint subsets so that G =
⋃̇

a∈Rep

H · a where Rep

consists of right coset representatives of H in G. Two elements a and b belong to the same
right coset if H · a = H · b which happens if and only if ab−1 ∈ H. This defines an equivalence
relation on G. The same is true of left cosets. For an arbitrary subgroup H, the left and right
cosets of H in G are not the same. However, there exists a one-to-one correspondence between
the left and right cosets of H in G (which holds even if |G| is infinite). This can be seen using
the map (aH) 7→ (aH)−1 = H−1a−1 = Ha−1. (Here H−1 = {h−1 : h ∈ H}.)

Definition 0.2. The index of a subgroup H ≤ G in G is the number of cosets (left or right)
of H in G. It is written as |G : H|.

The left and right cosets of a normal subgroup are the same. This is because N / G⇒ Na =
N ⇒ a−1Na = N ⇒ Na = aN for any a ∈ G.

Definition 0.3. Given two subsets L,K ⊆ G, we define the product of these subsets in G
to be the set KL = {kl : k ∈ K, l ∈ L}. Similarly, we define the inverse of the subset K to
be K−1 = {k−1 : k ∈ K}.

Exercise 0.4. Given a group G, K ≤ G if and only if K ⊂ G, K 6= ∅ and K ⊇ KK−1.

Definition 0.5. The cosets of a normal subgroup N /G form a group under multiplication of
subsets as defined above. This is known as the quotient group G/N .

Definition 0.6. A group G is said to be simple if |G| > 1 and the only normal subgroups of
G are {1} and G.

Definition 0.7. The set of all nonsingular n×n matrices over a field F is a group under matrix
multiplication. This is known as the General Linear Group and is denoted by GL(n,F).

Exercise 0.8. The center Z(GL(n,F)) ∼= F
×. (F× is the multiplicative group F\{0}.)

Hint. Show that Z(GL(n,F)) = {λI : λ ∈ F×, I is the identity matrix}.
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Definition 0.9. The projective general linear group PGL(n,F) is defined to be the quo-
tient GL(n,F)/Z(GL(n,F)).

Definition 0.10. The special linear group SL(n,F) is defined to be
{A ∈ GL(n,F) : det(A) = 1}.

Exercise 0.11. SL(n,F) / GL(n,F).
Hint. Show that the map det : GL(n,F)→ F

× is a homomorphism. Ker(det) = SL(n,F).

Exercise 0.12. If the homomorphism f : G→ H is onto, then H ∼= G/ker(f).

Therefore, GL(n,F)/SL(n,F) ∼= F
×.

Definition 0.13. The projective special linear group PSL(n,F) is defined to be the
quotient SL(n,F)/Z(SL(n,F)).

Exercise 0.14. Z(SL(n,F)) = SL(n,F) ∩ Z(GL(n,F)).

Theorem 0.15. PSL(n,F) is simple for all n ≥ 2 except n = 2, |F| ≤ 3.

Definition 0.16. G is said to be a p-group (p prime) if all the elements of G have order a
power of p.

Exercise 0.17. A finite group is a p-group if and only if the order of the group is a power of
p.

Example 0.18.

Matrices of the form

1 ∗
. . .

0 1


 ≤ SL(n,Fp) is a p-group. (‘*’s refer

to any values from Fp.)

Exercise 0.19. Find the order of the group shown in the last example.
Hint. It is of the form pN .

Definition 0.20. A permutation group of degree n is a subgroup of Sn.

Example 0.21. An ≤ Sn, |Sn : An| = 2. Dn ≤ Sn, |Dn| = 2n.

Dn may be defined by taking symmetries of a circle with n equidistant points on the circle.
This definition includes the cases n = 1 and n = 2. We see that D1

∼= Z2, D2
∼= V4 and

D3
∼= S3.

We represent permutations using cycle notation where the permutation σ = (3, 4, 5, 1)(2)
sends 1 7→ 3, 2 7→ 2, 3 7→ 4, 4 7→ 5 and 5 7→ 1. Every permutation in Sn can be written
uniquely as a product of cycles.

Remark 0.22. Given two permutations σ and τ , we shall use the notation xστ to mean (xσ)τ .
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Definition 0.23. A permutation acting on a domain Ω can be expressed as a bijective map
π : Ω → Ω. We define the support of the permutation as supp(π) = {x ∈ Ω: xπ 6= x}. We
define the degree of the permutation as deg(π) = | supp(π)|.

So, in the above example, we have supp(σ) = {1, 3, 4, 5}, and deg(σ) = 4. Similarly
supp(identity) = ∅ and deg(identity) = 0.

Definition 0.24. A 2-cycle is known as a transposition.

Exercise 0.25. Transpositions generate Sn.

Exercise 0.26. The product of an odd number of transpositions can never be the identity.

Exercise 0.27. σ ∈ Sn is even if and only if σ is a product of an even number of transpositions.
Similarly, σ ∈ Sn is odd if and only if σ is a product of an odd number of transpositions.

Theorem 0.28. An is simple for n ≥ 5.

Exercise 0.29. Find a normal subgroup isomorphic to V4 in S4.

The quotient of S4 by V4 is a group of 6 elements, it is in fact S3.

Exercise 0.30. Find a homomorphism from S4 to S3 which has kernel V4.

Definition 0.31. A permutation representation of G is a homomorphism f : G → Sn.
This representation is called faithful if f is one-to-one.

If H ≤ G with |G : H| = n, then H defines a permutation representation of G→ Sn. We shall
denote by G/H the set of left cosets of H in G, by H\G the set of right cosets of H in G, and
by Sym(Ω) all the permutations of Ω. We consider the map from G → Sym(H\G) given by
g 7→ {Ha 7→ Hag}.

Exercise 0.32. Prove that the above map defines a permutation of H\G (so that this is a
permutation representation).

In the special case when the subgroup H = {1}, the above permutation representation is known
as the right regular permutation representation of G. This gives us a homomorphism
ρ : G→ Sym(G) where ρg is the permutation {x 7→ xg} (often referred to as ‘right translation
by g’). Note that the length of each of the cycles in ρg is just the order of the element g.

Corollary 0.33. (Lagrange) ord(g)
∣∣∣ |G|.

Corollary 0.34. (Euler-Fermat) g.c.d. (a, n) = 1⇒ aφ(n) ≡ 1 (n).

Exercise 0.35. Deduce the above corollary from Cor 0.33
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Definition 0.36. Let f : G → Sym(Ω) be a permutation representation (sometimes also
referred to as a G-action on Ω). For any x ∈ Ω, we define the orbit of x as xG = {xg : g ∈ G}.
(Here by xg we mean xf(g).)

We have that y ∈ xG ⇐⇒ (∃ g)(y = xg). This defines an equivalence relation on Ω and then
equivalence classes are exactly the orbits of the G action on Ω.

Definition 0.37. We say that theG-action is transitive if Ω is an orbit i.e., (∀ x, y ∈ Ω)(∃ g ∈
G)(y = xg).

Definition 0.38. The stabilizer of any element x ∈ Ω under a G-action is Gx = {g ∈
G : xg = x}.

Exercise 0.39. Gx ≤ G.

Remark 0.40. There is a one-to-one correspondence between Gx\G and the orbit xG.

Corollary 0.41. |G : Gx| = |xG|. (|xG| is referred to as the length of the orbit xG.)

Corollary 0.42. |xG| divides |G| and |G| = |Gx| |xG|.

Exercise 0.43. If G is a transitive permutation group of degree pk, then G has a transitive
Sylow subgroup.

Exercise 0.44. The converse to the above statement is trivial and follows immediately from
the preceding corollaries: if G has a transitive Sylow subgroup, then the degree of G is a prime
power.

Example 0.45. D6 is a transitive permutation group on the set of 6 points (consider them
as the vertices of a regular hexagon). If we label these points as 1 through 6 in order, we
note that the partition {1, 3, 5} ∪ {2, 4, 6} is invariant under D6. Similarly, so is the partition
{1, 4} ∪ {2, 5} ∪ {3, 6}.

Definition 0.46. A G-action is primitive if there is no non-trivial invariant partition of Ω.

Exercise 0.47. The action of D5 is primitive, while that of D6 is not.

Exercise 0.48. A transitive action on a prime number of points is primitive.

A permutation action a domain induces a natural action on unordered pairs of the Domain.
This can be seen using the map Sn → S(n2)

defined in the natural way so that the permutation

σ = (1, 2, 3)(4, 5) 7→ σ(2) = ({1, 2}, {2, 3}, {3, 1})({1, 4}, {2, 5}, {3, 4}, {1, 5}, {2, 4}, {3, 5})({4, 5}).

Exercise 0.49. Sn acts primitively on the
(
n
2

)
pairs.

Exercise 0.50. Sn → S(nk)
is also primitive except when k = n

2 (n even).
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Exercise 0.51. A set of transpositions generates Sn if and only if they form a connected
graph.

Corollary 0.52. At least (n− 1) transpositions are needed to generate Sn.

Exercise 0.53. Let σ = (1, 2, . . . , n) and τ = (1, 2). Prove that σ and τ generate Sn.

Exercise 0.54. diam Γ(Sn, {σ, τ}) = Θ(n2). (an = Θ(n2) ⇒ c1n
2 < an < c2n

2 for some 0 <
c1 < c2.)

Exercise 0.55. diam Γ(Sn, A) = Θ(n2) where the generating set A consists of adjacent trans-
positions.
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