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Definition 0.1. Suppose G is a group and H < G. The sets {H - a: a € G} are the right
cosets of H in G. Left cosets are defined analogously.

The right cosets of H in G partition G into disjoint subsets so that G = U H - a where Rep
a€Rep
consists of right coset representatives of H in G. Two elements a and b belong to the same

right coset if H -a = H - b which happens if and only if ab~! € H. This defines an equivalence
relation on GG. The same is true of left cosets. For an arbitrary subgroup H, the left and right
cosets of H in GG are not the same. However, there exists a one-to-one correspondence between
the left and right cosets of H in G (which holds even if |G| is infinite). This can be seen using
the map (aH) +— (aH)™' = H 'a™! = Ha™!. (Here H-' = {h~': h e H}.)

Definition 0.2. The index of a subgroup H < G in G is the number of cosets (left or right)
of H in G. It is written as |G : H]|.
The left and right cosets of a normal subgroup are the same. This is because N <G = N¢ =

N =a"'Na=N = Na=aN for any a € G.

Definition 0.3. Given two subsets L, K C G, we define the product of these subsets in G
to be the set KL = {kl: k € K,l € L}. Similarly, we define the inverse of the subset K to
be K~ ={k™': k€ K}.

Exercise 0.4. Given a group G, K < G ifand only if K C G, K # ) and K D KK !,

Definition 0.5. The cosets of a normal subgroup N <G form a group under multiplication of
subsets as defined above. This is known as the quotient group G/N.

Definition 0.6. A group G is said to be simple if |G| > 1 and the only normal subgroups of
G are {1} and G.

Definition 0.7. The set of all nonsingular n xn matrices over a field F is a group under matrix
multiplication. This is known as the General Linear Group and is denoted by GL(n,F).

Exercise 0.8. The center Z(GL(n,F)) = F*. (F* is the multiplicative group F\{0}.)
Hint. Show that Z(GL(n,F)) = {A\: A € F*, I is the identity matrix}.



Definition 0.9. The projective general linear group PGL(n,F) is defined to be the quo-
tient GL(n,F)/Z(GL(n,F)).

Definition 0.10. The special linear group SL(n,F) is defined to Dbe
{A € GL(n,F): det(A) = 1}.

Exercise 0.11. SL(n,F) «GL(n,F).
Hint. Show that the map det : GL(n,F) — F* is a homomorphism. Ker(det) = SL(n,[F).

Exercise 0.12. If the homomorphism f : G — H is onto, then H = G /ker(f).

Therefore, GL(n,F)/SL(n,F) = F*.

Definition 0.13. The projective special linear group PSL(n,F) is defined to be the
quotient SL(n,F)/Z(SL(n,F)).

Exercise 0.14. Z(SL(n,F)) = SL(n,F) N Z(GL(n,F)).
Theorem 0.15. PSL(n,F) is simple for all n > 2 except n = 2, |F| < 3.

Definition 0.16. G is said to be a p-group (p prime) if all the elements of G have order a
power of p.

Exercise 0.17. A finite group is a p-group if and only if the order of the group is a power of
P.

Example 0.18. < Matrices of the form < SL(n,F,) is a p-group. (**’s refer

to any values from F,,.)

Exercise 0.19. Find the order of the group shown in the last example.
Hint. Tt is of the form p'.

Definition 0.20. A permutation group of degree n is a subgroup of .S,,.
Example 0.21. A, < S, |S,: Ay| =2. D, < S, |Dy| = 2n.
D,, may be defined by taking symmetries of a circle with n equidistant points on the circle.

This definition includes the cases n = 1 and n = 2. We see that Dy = Zs, Dy &£ V4 and
D3 = S3.

We represent permutations using cycle notation where the permutation o = (3,4,5,1)(2)
sends 1 — 3,2~ 2, 3— 4, 4+— 5 and 5 — 1. Every permutation in S,, can be written
uniquely as a product of cycles.

Remark 0.22. Given two permutations o and 7, we shall use the notation 2°7 to mean (z7)".



Definition 0.23. A permutation acting on a domain ) can be expressed as a bijective map
7w : Q — Q. We define the support of the permutation as supp(w) = {x € Q: 2™ # x}. We
define the degree of the permutation as deg(m) = | supp(7)|.

So, in the above example, we have supp(c) = {1,3,4,5}, and deg(c) = 4. Similarly
supp(identity) = () and deg(identity) = 0.

Definition 0.24. A 2-cycle is known as a transposition.
Exercise 0.25. Transpositions generate .S,,.
Exercise 0.26. The product of an odd number of transpositions can never be the identity.

Exercise 0.27. o € 5, is even if and only if ¢ is a product of an even number of transpositions.
Similarly, o € S, is odd if and only if ¢ is a product of an odd number of transpositions.

Theorem 0.28. A, is simple for n > 5.

Exercise 0.29. Find a normal subgroup isomorphic to Vy in Sy.

The quotient of Sy by V4 is a group of 6 elements, it is in fact S3.
Exercise 0.30. Find a homomorphism from S4 to S3 which has kernel Vj.

Definition 0.31. A permutation representation of G is a homomorphism f : G — S,.
This representation is called faithful if f is one-to-one.

If H < G with |G : H| = n, then H defines a permutation representation of G — S,,. We shall
denote by G/H the set of left cosets of H in G, by H\G the set of right cosets of H in G, and
by Sym(2) all the permutations of 2. We consider the map from G — Sym(H\G) given by
g— {Ha— Hag}.

Exercise 0.32. Prove that the above map defines a permutation of H\G (so that this is a
permutation representation).

In the special case when the subgroup H = {1}, the above permutation representation is known
as the right regular permutation representation of G. This gives us a homomorphism
p: G — Sym(G) where p, is the permutation {z — g} (often referred to as ‘right translation
by ¢’). Note that the length of each of the cycles in p, is just the order of the element g.

Corollary 0.33. (Lagrange) ord(g) | |G|.

Corollary 0.34. (Euler-Fermat) g.c.d. (a,n) =1 = a®™ =1 (n).

Exercise 0.35. Deduce the above corollary from Cor 0.33



Definition 0.36. Let f : G — Sym(Q2) be a permutation representation (sometimes also
referred to as a G-action on §2). For any z € €, we define the orbit of z as 2% = {29: g € G}.
(Here by 29 we mean z/(9).)

We have that y € ¢ <= (3 g)(y = 29). This defines an equivalence relation on © and then
equivalence classes are exactly the orbits of the G action on €.

Definition 0.37. We say that the G-action is transitive if Q is an orbit i.e., (V z,y € Q)(F g €
G)(y = 29).

Definition 0.38. The stabilizer of any element z €  under a G-action is G, = {g €
G: 29 =z}.

Exercise 0.39. G, <.

Remark 0.40. There is a one-to-one correspondence between G, \G and the orbit 2.
Corollary 0.41. |G : G| = |z9|. (|z%] is referred to as the length of the orbit )
Corollary 0.42. |2€| divides |G| and |G| = |G| |2€|.

Exercise 0.43. If G is a transitive permutation group of degree p¥, then G has a transitive
Sylow subgroup.

Exercise 0.44. The converse to the above statement is trivial and follows immediately from
the preceding corollaries: if G has a transitive Sylow subgroup, then the degree of G is a prime
power.

Example 0.45. Dg is a transitive permutation group on the set of 6 points (consider them
as the vertices of a regular hexagon). If we label these points as 1 through 6 in order, we
note that the partition {1,3,5} U{2,4,6} is invariant under Dg. Similarly, so is the partition
{1,4} U {2,5} U {3,6}.

Definition 0.46. A G-action is primitive if there is no non-trivial invariant partition of €.
Exercise 0.47. The action of Dj5 is primitive, while that of Dg is not.
Exercise 0.48. A transitive action on a prime number of points is primitive.

A permutation action a domain induces a natural action on unordered pairs of the Domain.
This can be seen using the map S,, — S @) defined in the natural way so that the permutation
2

o =(1,2,3)(4,5) = 0@ = ({1,2},{2,3}, {3, 1) ({1, 4}, {2,5}, {3,4}, {1, 5}, {2, 4}, {3,5}) ({4, 5}).
Exercise 0.49. S, acts primitively on the (g) pairs.

Exercise 0.50. S,, — S(n) is also primitive except when k = § (n even).
k



Exercise 0.51. A set of transpositions generates S, if and only if they form a connected
graph.

Corollary 0.52. At least (n — 1) transpositions are needed to generate Sy,.
Exercise 0.53. Let 0 = (1,2,... ,n) and 7 = (1,2). Prove that o and 7 generate S,,.

Exercise 0.54. diam I'(S,, {o,7}) = O(n?). (a, = ©(n?) = c1n? < a, < can? for some 0 <
c1 < c.)

Exercise 0.55. diam I'(S,, A) = ©(n?) where the generating set A consists of adjacent trans-
positions.



