Discrete Math, Second Series, 4th Problem Set (July 25) REU 2003 Instructor: Laszlo Babai Scribe: Mridul Mehta We focus our attention on automorphism groups of regular solids. A tetrahedron is just another way of representing the complete graph on 4 vertices i.e., K_4 . The automorphism group $Aut(K_4) = S_4$. More generally, we have $Aut(K_n) = S_n$, where K_n is the complete graph on n vertices. Next, we consider a cube. We may label the vertices of the cube so that the four in the top face are 1, 2, 3 and 4, while the diagonally opposite ones in the bottom face are 1', 2', 3' and 4' respectively. Aut(cube) = $S_4 \times \mathbb{Z}_2$. Here the nonidentity element of \mathbb{Z}_2 corresponds to the central involution (i.e., reflection about the center of the cube) which is orientation reversing, while elements of S_4 correspond to the orientation preserving automorphisms of the cube. **Exercise 0.1.** If $A \in M_3(\mathbb{R})$, then A has a real eigenvector. $(M_n(\mathbb{R})$ is the set of all $n \times n$ matrices with entries from \mathbb{R} .) **Exercise 0.2.** In \mathbb{R}^3 , every orientation preserving congruence which fixes the origin is a rotation. (Note: a linear transformation A is *orientation preserving* if $\det(A) > 0$. By considering the action on pairs of opposite vertices of the cube (the main diagonals of the cube) we obtain the map $\operatorname{Aut}(\operatorname{cube}) \to S_4$. The kernel of this map is <central reflection>. The image is all of S_4 , so the map is onto. To see this, we define ρ as a rotation about the vertical axis of the cube, and $\tilde{\rho}$ as the corresponding element of S_4 induced by ρ . Then ρ permutes the main diagonals so that $\tilde{\rho}(\{i,i'\}) = (\{i+1,(i+1)'\}) \mod 4$. Similarly, if we let σ be rotation about the diagonal (1,1') by 120° , then the induced permutation $\tilde{\sigma}$ permutes the other three diagonals. The next exercise completes the argument. Exercise 0.3. $S_4 = \langle \tilde{\rho}, \tilde{\sigma} \rangle$. **Exercise 0.4.** If C is any centrally symmetric bounded subset of \mathbb{R}^3 , then the group of congruences of C, $\operatorname{Aut}(C) = \mathbb{Z}_2 \times \operatorname{Aut}^+(C)$. Here $\operatorname{Aut}^+(C)$ is the orientation preserving subgroup. **Exercise 0.5.** Show that the above statement fails to hold when C is not bounded. To see this, construct a central symmetric subset C of \mathbb{R} such that the group of congruences of S has trivial center. Hint. Either $C = \mathbb{R}$ or $C = \mathbb{Z}$ will do. Show that if ρ_i denotes the reflection about point $i \in \mathbb{R}$, and τ the translation by 1 to the right, then $(\rho_0)^{\tau^i} = (\tau^i)^{-1}(\rho_0)(\tau^i) = \rho_i$. **Exercise 0.6.** Find a finite group G such that (a) the center of G is neither the identity nor G; (b) $(\nexists A \leq G)(G = Z(G) \times A)$. Find the smallest such group G. **Definition 0.7.** The **semidirect product** of groups K and L with respect to $\alpha : K \to \operatorname{Aut}(L)$ is the group $G = L \rtimes_{\alpha} K$ defined as the set $\{(l,k): l \in L, k \in K\}$ with the operation $(l,k)(l',k') = (ll'^{\alpha(k)},kk')$. **Exercise 0.8.** With the above definition, show that (a) (l,k) = (l,1)(1,k); (b) $(1,k)(l,1)(1,k)^{-1} = (l^{\alpha(k)},1)$; (c) $L \cong \{(l,1): l \in L\} \triangleleft G$; and (d) $K \cong \{(1,k): k \in K\} \leq G$. **Definition 0.9.** Let $G \leq S_k$ and H be any abstract group. The **wreath product** of H by G is defined to be $H \wr G = H^k \rtimes_{\alpha} G$ where $\alpha : G \to \operatorname{Aut}(H^k)$ is the permutation action of G on the k components of H^k . Let $X = X_i \cup \cdots \cup X_k$ be a graph with connected components X_i and $X_i \cong X_j$ for all $1 \leq i, j \leq k$. Then $\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr S_k$. If $G \leq S_k$ and $H \leq \operatorname{Sym}(\Omega)$, then the wreath product $H \wr G$ naturally acts on $\Omega_1 \dot{\cup} \cdots \dot{\cup} \Omega_k$ $(|\Omega_i| = |\Omega|)$. Here H_i , the *i*th component of H^k acts on Ω_i , and G permutes the H_i . In this case, $H \wr G \leq S_{kl}$ (where l is the degree of $\operatorname{Sym}(\Omega)$). This is called the "imprimitive representation" of $H \wr G$. **Remark 0.10.** $H^k \triangleleft H \wr G$, $G \leq H \wr G$, and $(H \wr G)/H^k \cong G$. Let Q_n be the graph of the *n*-cube. So $|Q_n| = 2^n$, and we may think of the vertices of this graph as elements of $\{0,1\}^n$, i.e., strings of length *n* consisting of 0s and 1s. We define the **Hamming distance** between two strings of equal length to be the number of places where they differ. Two vertices in Q_n will be adjacent if their Hamming distance is 1. Switching coordinates of vertices independently corresponds to reflections about various planes which shows that $(\mathbb{Z}_2)^n \leq \operatorname{Aut}Q_n$. Similarly, permuting the positions of coordinates corresponds to rotations about different lines, which gives us $S_n \leq \operatorname{Aut}(Q_n)$. Exercise 0.11. $\operatorname{Aut}(Q_n) = \mathbb{Z}_2 \wr S_n$. **Remark 0.12.** $(\mathbb{Z}_2)^n \triangleleft \operatorname{Aut}(Q_n)$ and $\operatorname{Aut}(Q_n)/(\mathbb{Z}_2)^n \cong S_n$. The "primitive representation" of $H \wr G$ is the action of $H \wr G$ on $\Omega_1 \times \cdots \times \Omega_k = \Omega^k = \{(a_1, \ldots, a_k) : a_i \in \Omega\}$ given by $(a_1, \ldots, a_k)^{(h_1, \ldots, h_k; g)} = (a_{1g^{-1}}^{h_1}, \ldots, a_{kg^{-1}}^{h_k})$. Corollary 0.13. $S_4 \times \mathbb{Z}_2 \cong \mathbb{Z}_2 \wr S_3$. The octahedron is the dual of the cube. Hence its automorphism group is the same as that of the cube. Exercise 0.14. $Aut(Octahedron) \cong Aut(Cube)$. **Exercise 0.15.** Generalize the above exercise to *n*-dimensions. Aut(Dodecahedron) = $A_5 \times \mathbb{Z}_2$. Here, as before, the element in \mathbb{Z}_2 is the central reflection and A_5 is the subgroup of the orientation preserving automorphisms. **Exercise 0.16.** Show that the action of the rotation group of the dodecahedron on the 5 triples of perpendicular axes connecting opposite edges is A_5 . Exercise 0.17. The action on the 10 pairs of opposite vertices in the dodecahedron is primitive. **Exercise 0.18.** Show that the automorphism group of Petersen's graph (see handout) is S_5 . To do this, observe that Petersen's graph may be constructed by defining the vertex set to be $\binom{5}{2}$ i.e., all pairs of 5 objects, and adjacency to be given by disjointness (so that two pairs are adjacent if they are completely disjoint).