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REU 2003

Instructor: Laszlo Babai
Scribe: Mridul Mehta

We focus our attention on automorphism groups of regular solids. A tetrahedron is just
another way of representing the complete graph on 4 vertices i.e., K4. The automorphism
group Aut(K4) = S4. More generally, we have Aut(Kn) = Sn, where Kn is the complete graph
on n vertices.

Next, we consider a cube. We may label the vertices of the cube so that the four in the top
face are 1, 2, 3 and 4, while the diagonally opposite ones in the bottom face are 1′, 2′, 3′ and
4′ respectively. Aut(cube) = S4 × Z2. Here the nonidentity element of Z2 corresponds to the
central involution (i.e., reflection about the center of the cube) which is orientation reversing,
while elements of S4 correspond to the orientation preserving automorphisms of the cube.

Exercise 0.1. If A ∈ M3(R), then A has a real eigenvector. (Mn(R) is the set of all n × n
matrices with entries from R.)

Exercise 0.2. In R3, every orientation preserving congruence which fixes the origin is a rota-
tion. (Note: a linear transformation A is orientation preserving if det(A) > 0.

By considering the action on pairs of opposite vertices of the cube (the main diagonals of the
cube) we obtain the map Aut(cube)→ S4. The kernel of this map is <central reflection>. The
image is all of S4, so the map is onto. To see this, we define ρ as a rotation about the vertical
axis of the cube, and ρ̃ as the corresponding element of S4 induced by ρ. Then ρ permutes the
main diagonals so that ρ̃({i, i′}) = ({i+ 1, (i+ 1)′}) mod 4. Similarly, if we let σ be rotation
about the diagonal (1, 1′) by 120◦, then the induced permutation σ̃ permutes the other three
diagonals. The next exercise completes the argument.

Exercise 0.3. S4 =< ρ̃, σ̃ >.

Exercise 0.4. If C is any centrally symmetric bounded subset of R3, then the group of con-
gruences of C, Aut(C) = Z2×Aut+(C). Here Aut+(C) is the orientation preserving subgroup.

Exercise 0.5. Show that the above statement fails to hold when C is not bounded. To see
this, construct a central symmetric subset C of R such that the group of congruences of S has
trivial center. Hint. Either C = R or C = Z will do. Show that if ρi denotes the reflection
about point i ∈ R, and τ the translation by 1 to the right, then (ρ0)τ

i
= (τ i)−1(ρ0)(τ i) = ρi.
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Exercise 0.6. Find a finite group G such that (a) the center of G is neither the identity nor
G; (b) (@ A ≤ G)(G = Z(G)×A). Find the smallest such group G.

Definition 0.7. The semidirect product of groups K and L with respect to α : K →
Aut(L) is the group G = L oα K defined as the set {(l, k) : l ∈ L, k ∈ K} with the operation
(l, k)(l′, k′) = (ll′α(k), kk′).

Exercise 0.8. With the above definition, show that (a) (l, k) = (l, 1)(1, k);
(b) (1, k)(l, 1)(1, k)−1 = (lα(k), 1); (c) L ∼= {(l, 1) : l ∈ L} / G; and (d) K ∼= {(1, k) : k ∈
K} ≤ G.

Definition 0.9. Let G ≤ Sk and H be any abstract group. The wreath product of H by
G is defined to be H oG = Hk

oα G where α : G → Aut(Hk) is the permutation action of G
on the k components of Hk.

Let X = Xi ∪ · · · ∪ Xk be a graph with connected components Xi and Xi
∼= Xj for all

1 ≤ i, j ≤ k. Then Aut(X) = Aut(X1) o Sk.

If G ≤ Sk and H ≤ Sym(Ω), then the wreath product H o G naturally acts on Ω1∪̇ · · · ∪̇Ωk

(|Ωi| = |Ω|). Here Hi, the ith component of Hk acts on Ωi, and G permutes the Hi. In
this case, H o G ≤ Skl (where l is the degree of Sym(Ω)). This is called the “imprimitive
representation” of H oG.

Remark 0.10. Hk / H oG, G ≤ H oG, and (H oG)/Hk ∼= G.

Let Qn be the graph of the n-cube. So |Qn| = 2n, and we may think of the vertices of this
graph as elements of {0, 1}n, i. e., strings of length n consisting of 0s and 1s. We define the
Hamming distance between two strings of equal length to be the number of places where
they differ. Two vertices in Qn will be adjacent if their Hamming distance is 1.

Switching coordinates of vertices independently corresponds to reflections about various planes
which shows that (Z2)n ≤ AutQn. Similarly, permuting the positions of coordinates corre-
sponds to rotations about different lines, which gives us Sn ≤ Aut(Qn).

Exercise 0.11. Aut(Qn) = Z2 o Sn.

Remark 0.12. (Z2)n /Aut(Qn) and Aut(Qn)/(Z2)n ∼= Sn.

The “primitive representation” of H o G is the action of H o G on Ω1 × · · · × Ωk = Ωk =
{(a1, . . . , ak) : ai ∈ Ω} given by (a1, . . . , ak)(h1,... ,hk;g) = (ah1

1g
−1 , . . . , a

hk
kg
−1 ).

Corollary 0.13. S4 × Z2
∼= Z2 o S3.

The octahedron is the dual of the cube. Hence its automorphism group is the same as that of
the cube.

Exercise 0.14. Aut(Octahedron) ∼=Aut(Cube).
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Exercise 0.15. Generalize the above exercise to n-dimensions.

Aut(Dodecahedron) = A5×Z2. Here, as before, the element in Z2 is the central reflection and
A5 is the subgroup of the orientation preserving automorphisms.

Exercise 0.16. Show that the action of the rotation group of the dodecahedron on the 5
triples of perpendicular axes connecting opposite edges is A5.

Exercise 0.17. The action on the 10 pairs of opposite vertices in the dodecahedron is primi-
tive.

Exercise 0.18. Show that the automorphism group of Petersen’s graph (see handout) is S5.
To do this, observe that Petersen’s graph may be constructed by defining the vertex set to be(

5
2

)
i.e., all pairs of 5 objects, and adjacency to be given by disjointness (so that two pairs are

adjacent if they are completely disjoint).
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