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Exercise 0.1. If G is a nonabelian group, show that G/Z(G) is not cyclic.

Definition 0.2. The exponent exp(G) of a group G is the least common multiple of the orders
of the elements. Equivalently, the exponent is the smallest positive integer k such that gk = 1
for every element g of G.

Exercise 0.3. The exponent of a group divides the order of the group. Hint. Recall that
g|G| = 1 (Lagrange).

Exercise 0.4. Show exp(Sn) = l.c.m. (1, . . . , n). Hint. (1) The order of a k-cycle is k. (2)
The order of a permutation is the l.c.m. of the lengths of its cycles.

Exercise 0.5. Use the Prime Number Theorem to show that

ln (l.c.m. (1, . . . , n)) ∼ ln

(∏
p<n

p

)
∼ n.

Note with awe that it’s the natural logarithm!

How high can the order of an individual element be? If mn is the maximum order of an
element of Sn, then we can approximate it well by taking disjoint cycles of distinct prime orders.
This gives us an element with order

∏
p≤x p where x is the greatest number with

∑
p≤x p ≤ n.

Then lnmn ∼ ln
∏
p≤x p.

Exercise 0.6.
∑

p≤x p ∼
x2

2 lnx (so the average value of a prime number less than x is asymp-
totically x

2 ). Hint. Use this form of the Prime Number Theorem: if pk denotes the k-th prime
then pk ∼ k ln k.

The following theorem is nw a corollary:

Exercise 0.7. (Landau) lnmn ∼
√
n lnn.
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Note that this quantity is much smaller than the exponent of Sn.

Rubik’s Cube consists of a cube with each dimension divided into thirds, so the big cube
is divided into 27 cubies. Thus the group R of operations that can be performed by turning
the sides has a homomorphism to S27, or actually S20, since the central cubie and the centers
of each face do not move. But this homormorphism has a kernel, since a cubie can rotate while
returning to its original place. A configuration is determined by the stickers. There are 54
stickers, but those on centers of the faces do not move, so R is a subgroup of S48.

If we disassemble the cube, we can perform a slightly larger group of operations G, which is
easier to describe. The group of rotating a corner cubie in place is Z3. Rotating and rearranging
all corners is Z3 o S8 (wreath product). This is the group of disassembling a 2× 2× 2 Rubik’s
Cube. Similarly, the group of flipping and rearranging all edges is Z2 oS12. These two operations
are independent (if we are allowed to disassemble the cube), so G = (Z3 o S8)× (Z2 o S12).

Exercise 0.8. Show [G : R] ≥ 12. That is, find a group of index 12 in G containing R.
Hint. Show that there are restrictions on the positions that can be reached by turning the
sides. Specifically, show that if none of the corner cubies moves, the sum of their rotations is 0.
(Inside Z8

3, this is the subgroup of elements whose entries add up to 0 (the additive identity).)
Similarly, if none of the edges move, an even number must be flipped. Finally, the image of the
homomorphism R→ S20 that ignores rotations and flips and looks only at the permutation of
cubies has image in A20 (even permutations only).

Exercise 0.9. Show [G : R] = 12. That is, show that the rotations of the sides generate the
group of index 12 from the previous exercise; solve the puzzle.
Hint. Find sequences of generators that perform very simple operations on the cube, such as
3-cycles of edges or vertices, flipping two edges, or rotating one corner clockwise and another
counterclockwise.

Exercise 0.10. A k-cycle is a product of k − 1 transpositions. Hence a k-cycle is even if and
only if k is odd.

Conjecture 0.11. For any set S that generates of Sn, diam(Sn, S) < nC . Maybe even
diam(Sn, S) = (n2). (diam(G,S) denotes the diameter of the Cayley graph Γ(G,S ∪ S−1).)

Theorem 0.12 (Even-Goldreich). If G ∼= Z
m
2 and G < Sn is generated by a set S (described

as element of Sn), the problem of computing diam(G,S) is NP-hard.

Theorem 0.13 (Jerrum). Finding the shortest word representing g ∈ G ≤ Sn in terms of a
generating set S is PSPACE-hard.

Jerrum does not assume that S−1 = S, so what he measures is the directed distance in the
Cayley graph. It is expected that this result remains true if we require S = S−1.

Theorem 0.14 (B–Seress). Let S generate Sn. diam(Sn, S) < m
1+o(n)
n .
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This result suffers from the “element-order bottleneck.” The two tricks used are commu-
tators and raising elements to powers. A recent result gives a polynomial upper bound under
the condition that one of the generators fixes 70% of the permutation domain. So now all is
left to prove is that we can reach such a permutation in a polynomially bounded number of
steps. Somebody in this audience may be able to do this with a fresh idea.

Theorem 0.15 (B–Beals–Seress). Let S generate Sn. If ∃s ∈ S with the deg s < 0.3n then
diam(Sn, S) < nC (C = 12?). (Recall that the degree of a permutation is size of its support,
the set of elements that it actually moves.)

We really only need to care about reaching the even permutations. Indeed, if we can always
reach the even permutations quickly, here is how we handle an odd target permutations σ. We
multiply σ by the inverse of an odd generator; the product is even so we can get there quickly,
finally multiply by the odd generator. Thus the diameter of Sn is at most 2 more than cost of
reaching the even permutations.

Exercise 0.16. 3-cycles generateAn. In fact, any connected set of 3-cycles (a set that connects
all the points) is a generating set.

Exercise 0.17. For σ ∈ Sn, (1 2 3)σ = (1σ 2σ 3σ). (Compare this to the geometric argument
that the conjugate of a rotation is still a rotation, with the new center the image under the
conjugating map of the old center.)

The plan is to get a 3-cycle and conjugate it to get a connected set of 3-cycles.

Definition 0.18. If a, b ∈ G then the commutator of a, b is the element [a, b] = a−1b−1ab.
Note that [a, b] = 1 if and only if ab = ba.

Exercise 0.19. If | suppσ ∩ supp τ | = 1 then σ and τ ] cannot commute.

Exercise 0.20. If | suppσ ∩ supp τ | = 1 then [σ, τ ] is a 3-cycle.

Exercise 0.21. deg[σ, τ ] ≤ 3| suppσ ∩ supp τ |. Show that this exercise also solves the preced-
ing one.

Exercise 0.22. If σ and τ are cycles and | suppσ ∩ supp τ | = 1, then σ and τ generate either
the symmetric or alternating group on the union of their support, which has deg σ+ deg τ − 1
elements.

Exercise 0.23. If H < G and [G : H] = 2, then H / G.

Exercise 0.24. If H < G and [G : H] = 2, then (∀g ∈ G)(g2 ∈ H).

Exercise 0.25. If H < Sn and [Sn : H] = 2 then H = An. Hint. Every 3-cycle is a square
(of its own square).

Exercise 0.26. If H < G and [G : H] = k, then the kernel K of G → Sym(H\G) satisfies
K /H,G and [G : K] ≤ k!. Hint. The image of G is a subgroup of Sk.
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Exercise 0.27. If H ≤ Sn, n ≥ 5, and H 6= An, Sn, then [Sn : H] ≥ n. So Sn−1 is the second
largest subgroup of Sn.
Hint. Use that An is simple.

Remark 0.28. More generally, for n large, the largest few subgroups of Sn are variants on
Sk×Sn−k. These are the point stabilizers of the action of Sn on k-element subsets. “Variants”
refers to restrictions on parity, e. g., An ∩ (Sk × Sn−k) and Ak × An−k have index 2 and 4,
respectively, in Sk × Sn−k.
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