
Discrete Math, Second Series, 6th Problem Set (July 30)

REU 2003

Instructor: László Babai
Scribe: Ben Wieland

1 Revisit the first problem set

Definition 1.1. A product-free set in a group G is a subset L ⊂ G such that the equation
xy = z has no solution in L.
For a finite group G, let α(G) be the proportion of G in the largest product free set; α(G) =
|L|/|G|, for L ⊂ G the largest product-free set.

Exercise 1.2. If G→ H is a surjective homomorphism, show that α(G) ≥ α(H).

Exercise 1.3. α(G) ≤ 1
2 .

Exercise 1.4. If G has a subgroup of index 2, then α(G) = 1
2 . In particular, if G = Sn (n ≥ 2)

or G is an abelian groups of even order then α(G) = 1
2 .

Exercise 1.5. If G = K × L then α(G) = max{α(K), α(L)}.

Definition 1.6. A group is finitely generated if it has a finite set of generators.

Exercise 1.7. Find an infinite group G such that G is not finitely generated but every proper
subgroup of G is finite and cyclic of prime power order. Hint. Prove that such a group must
be abelian. Look for such gtoups among the subgroups of the multiplicative group of complex
numbers of unit absolute value.

Exercise 1.8. Let G be an infinite abelian group and let H be the subset consisting of the
elements of finite order. Prove that H is a subgroup. (H is called the torsion subgroup of
G.

Theorem 1.9 (Fundamental theorem of finitely generated abelian groups). Every finitely
generated abelian group is the direct product of a finite number of cyclic groups. The number of
infinite cycic groups in this factorization is unique. The product of the finite abelian subgroups
in this factorization is unique; it is the torsion subgroup of G.
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Exercise 1.10. Let G be a finitely generated abelian group. Then G = L × T where T is
the torsion subgroup and L is a direct product of infinite cyclic groups in accordance with the
Fundamental Theorem. Prove that the subgroup L is not unique, unless G is “torsion-free”
(T = {1}

Exercise 1.11. Prove that K × L is, the direct product of two finite groups, is cyclic if and
only if both K and L are cyclic and their orders are relatively prime. In particular, every finite
cyclic group is the direct product of cyclic groups of prime power order.

Theorem 1.12 (Fundamental theorem of finite abelian groups). Every finite abelian group
is the direct product of cyclic groups of prime power order. The orders in this factorization are
unique.

Exercise 1.13. Show that the subgroups in this factorization need not be unique.

Thus to compute α(G) for finite abelian groups, it suffices to know α(Zpk).

Corollary 1.14 (Fundamental theorem of finite abelian groups, Smith normal form).
Every finite abelian group is the direct product of cyclic groups Zn1 × . . .Znk where 2 ≤ n1 and
ni−1 | ni for all i. The values n1, . . . , nk are unique.

Exercise 1.15. α(Z7) = 2/7, contrary to the lower bound 1
3 claimed in the first problem set.

Exercise+ 1.16. (Cauchy-Davenport) For a prime p, if A,B ⊂ Zp let A+B = {a+ b | a ∈
A, b ∈ B}. Then |A+B| = max{p, |A|+ |B| − 1}.

Exercise 1.17. α(Zp) = bp+1
3 c/p

Hint. The lower bound is easy: take the middle third of the group. Use the Cauchy-Davenport
Theorem for the upper bound.

Exercise 1.18. If G is abelian then 2
7 ≤ α(G) ≤ 1

2 .

Exercise 1.19. What is the exact value of α(Z/pk)? It’s probably known, but the instructor
did not check the literature. Search under the title “sum-free sets” (abelian groups are comonly
written additively).

But the real question is for nonabelian groups. The most interesting cases would be classes
of simple groups, starting with the alternating groups and the projective special linear groups.

Exercise 1.20. If H � G then α(G) ≥ 1
[G:H] . Hint. take a coset.

Exercise 1.21. α(An) ≥ 1
n .

Conjecture 1.22. α(An) = o(1) (i. e., limn→∞ α(An) = 0.)

Nothing better than the inequalities 1/n ≤ α(An) ≤ 1/2 appears to be known for n ≥ 5.
Perhaps α(An) = 1/n but the instructor would not bet on this one.

More generally, the o(1) is likely to hold for all finite simple groups:
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Conjecture 1.23. Let Gn be an infinite sequence of finite simple groups (|Gn| → ∞). Then
α(Gn) = o(1).

It would be of interest to prove this various inifinite classes of finite simple groups, such as
the projective special linear groups.

2 Finite probability spaces.

Exercise 2.1. Let G ≤ Sn is a transitive permutation group and A,B ⊂ Ω = {1, . . . , n}. Pick
σ ∈ G at random (from the uniformly distribution, i. e., each g ∈ G has the same probability
1/|G| to be selected as σ). Prove that the expected size of the intersection of A and Bσ is

E(|A ∩Bσ|) =
|A||B|
n

.

Hint. Use indicator random variables. (See the Finite Probability Spaces handout.)

Interpretation: we can consider A and B as events on the probability space Ω (randomly
pick a point x ∈ Ω; the events are whether x ∈ A and whether x ∈ B). We call A and B
“independent events” if P (A∩B) = P (A)P (B), i e., if P (x ∈ A∩B) = P (x ∈ A)P (x ∈ B), or
yet in other words, if |A∩B|/n = (|A|/n)(|B|/n). The intuitive meaning of the formula stated
in the exercise becomes more evident in this context if we divide each side by n:

E(
|A ∩Bσ|

n
) =
|A|
n
· |B|
n
.

This means A and Bσ behave like independent events in the expectation.

Enhanced hint. Show that if x is randomly chosen from Ω and σ is randomly chosen from a
transitive group G then the events x ∈ A and x ∈ Bσ are independent. (This is immediate if
G = Sn (why?) but remains true for any transitive group G.) Then use indicator variables to
show how this translates into the expected intersection size of A and Bσ.

3 Graphs

Definition 3.1. The right regular representation of a group G is the homomorphism
ρ : G → Sym(G) given by g 7→ ρg, where ρg is the permutation that acts as xρg = xg. The
image (which is isomorphic to G) is denoted R(G).

Corollary 3.2 (Cayley). Every group is isomorphic to a permutation group.
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Definition 3.3. If G is generated by a set S, then the Cayley Color Diagram Γc(G,S) is
the colored digraph on the vertex set G with edges pointing from g to sg labeled (colored) by
s for all g ∈ G and s ∈ S. Automorphisms of such a colored digraph preserve the colors by
definition.

Exercise 3.4. Aut(Γc(G,S)) = R(G). It contains R(G) because right multiplication com-
mutes with left multiplication, which defines Γc.

Exercise 3.5. (Frucht’s Theorem) For any group G there exists a graph X with Aut(X) ∼=
G. (X is an undirected, uncolored graph.)

Exercise+ 3.6. (Babai) X can be chosen with ≤ 2|G| vertices, unless G is the cyclic group
of order 3, 4, or 5.

3.1 Automorphisms of finite projective planes

Please consult the handout about Finite Projective Planes.

Conjecture 3.7. Not every finite group is isomorphic to the group of automorphisms (collineations)
of a finite projective plane. In fact, not every finite group is isomorphic even to a subgroup of
the automorphism group of a finite projective plane. A6 appears to be a candidate; A100 looks
like an easier one to rule out as a subgroup.

Exercise 3.8. If P is a finite projective plane of order n and Q is a subplane, then the order
of Q is at most

√
n.

Exercise 3.9. Let P be a finite projective plane of order n. Prove that |Aut(P )| ≤ n5+log logn.
(log to base 2.)
Hint. Use the above exercise: log n is the number of times you can iteratively divide n by 2;
log log n is the number of times you can iteratively take the square root of n.

Exercise 3.10. If P is a finite Galois plane of order q then |Aut(P )| = O(q8 log q).
Hint. If P = PG(2, q) then Aut(P ) = PΓL(3, q) where PΓL is the same as PGL except we
permit the field automorphisms to act on the matrix elements. If q = pr is the order of the
field of definition of P then |Aut(Fq)| = r ≤ log2 q.

Conjecture 3.11. If P is a projective plane of order n, then |Aut(P )| ≤ nC for some constant
C. Perhaps, |Aut(P )| ≤ n8+o(1).

3.2 Symmetry and connectivity of graphs

Definition 3.12. An undirected graph X = (V,E) is connected if every pair of vertices is
connected by a path. It is k-connected if it remains connected after removing any k − 1
vertices (except the complete graph Kn which is n− 1-connected by convention). Let κ(X) be
the maximum k such that X is k-connected. κ(X) is called the vertex-connectivity of X.
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Example 3.13. The cycle graph has κ(Cn) = 2 for all n ≥ 3. One should think of this as
a topological invariant and all cycles have the same shape. This requires the convention that
κ(C3) = κ(K3) = 2.

Definition 3.14. If s, t are vertices in a graph X, then the s-t-connectivity κ(X; s, t) is
the minimum number of vertices to delete to prevent there from being a path from s to t.
(If there’s a direct edge from s to t, count deleting it as deleting a vertex.) Then κ(X) =
mins,t{κ(X; s, t)}. There is a similar notion κ+(X; s, t) for directed graphs and directed paths
from s to t. There is also the edge s-t-connectivity ρ(X; s, t), the minimum number of
edges to delete to prevent there from being a path from s to t. This has a global version
ρ(X) = mins,t{ρ(X; s, t)} and a directed version ρ+.

Theorem 3.15 (Menger). κ(X; s, t) is also the number of vertex-disjoint paths from s to t.
ρ(X; s, t) is also the number of edge-disjoint paths from s to t. The analogous directed versions
are also true.

Exercise 3.16. Assume we know the directed-edge-version of Menger’s Theorem. Deduce the
other three versions.

Exercise 3.17. (Fundamentals of Combinatorial Duality Theory.) Deduce the directed-edge-
version of Menger’s Theorem from the Max-flow-min-cut Theorem in network flows. Deduce
the Max-flow-min-cut Theorem from the Duality Theorem of Linear Programming. Ask about
these theorems in tutorial.

Exercise 3.18. κ ≤ ρ ≤ minv∈V deg(v).

Definition 3.19. X is a vertex-transitive graph if its automorphism group acts transitively
on its vertices. Similarly, it is edge-transitive if the automorphism group acts transitively
on the edges. It is vertex- or edge-primitive if the automorphism group acts primitively on
the set of vertices (edges, respectively).

Exercise 3.20. Every vertex transitive graph is regular (all vertices have the same degree).

Exercise 3.21. Construct a graph which is vertex-transitive but not edge-transitive.

Exercise 3.22. (easy) Construct a graph which is edge-transitive but not vertex-transitive.

Exercise+ 3.23. Construct a graph which is edge-transitive, not vertex-transitive, but is
regular.

Theorem 3.24 (Mader-Watkins). If X is an undirected, connected, vertex-transitive graph,
regular of degree d, then

1. κ(X) ≥ d2d+1
3 e;

2. ρ(X) = d;

3. if X is edge-transitive or vertex-primitive, then κ(X) = d.
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Exercise 3.25. Show that d2d+1
3 e is tight for infinitely many d. That is, construct graphs

with exactly that value of κ.

Definition 3.26. A directed graph is strongly connected if for every pair of vertices s and
t, there is a directed path from s to t. It is weakly connected if it is a connected as an
undirected graph when we ignore the orientation of the edges.

Definition 3.27. A directed graph X satisfies the Euler condition if for each vertex the
in-degree is equal to the out-degree.

Exercise 3.28. (a) Prove that every finite vertex-transitive digraph satisfies the Euler condi-
tion. (b) Prove that this statemnt is false for infinite vertex-transitive graphs.

Exercise 3.29. If a directed graph X satisfies the Euler condition then it is strongly connected
if and only if it is weakly connected.

Theorem 3.30 (Hamidoune). If X a finite, connected vertex-transitive digraph then

1. κ+(X) ≥ dd+1
2 e;

2. ρ+(X) = d;

3. if X is edge-transitive or vertex-primitive, then κ+(X) = d.

Exercise 3.31. Use Hamidoune’s theorem to prove the Cauchy-Davenport Theorem.
Hint. Use the vertex-primitive version.

A typesetting command error (a signle omitted backslash) rendered a paragraph unintel-
ligible in the previous handout. It was the paragraph connecting two theorems. Here we
reproduce the two theorems with the corrected paragraph inbetween.

Theorem 3.32 (B–Seress). Let S generate Sn. diam(Sn, S) < m
1+o(n)
n .

This result suffers from the “element-order bottleneck.” The two tricks used are commu-
tators and raising elements to powers. A recent result gives a polynomial upper bound under
the condition that one of the generators fixes 70% of the permutation domain. So now all is
left to prove is that we can reach such a permutation in a polynomially bounded number of
steps. Somebody in this audience may be able to do this with a fresh idea.

Theorem 3.33 (B–Beals–Seress). Let S generate Sn. If ∃s ∈ S with the deg s < 0.3n then
diam(Sn, S) < nC (C = 12?). (Recall that the degree of a permutation is size of its support,
the set of elements that it actually moves.)
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