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0.1 Set theory

Definition 0.1. S is a countably infinite set if there exists a 1-1 correspondence between
S and N.

Exercise 0.2. Prove that the following sets are countably infinite: Q, Z", Q", the set of
algebraic numbers.

Definition 0.3. A set S has the cardinality of continuum if there exists a 1-1 correspondence
between S and [0, 1].

Definition 0.4. Let S be a set. The power set of S, denoted 2°, is the set of all subsets of
S.

Exercise 0.5. Prove that the following sets have the cardinality of continuum: R, R", C[0, 1]
(set of all continuous functions defined on [0, 1]), Sym(Z) (set of all permutations of Z), 2Z.

Definition 0.6. We say that the cardinality of a set T is at least as big as the cardinality of
a set S, i.e. card(S) < card(T), if there exists an injective function from S to 7.

Exercise 0.7. Prove: If card(S) < card(T') and card(T") < card(S) then card(S) = card(T),
i.e. there exists a bijection between S and T'.

Theorem 0.8 (Cantor). card(2°) > card(S), i. e., there is no 1-1 correspondence between S
and its power set 25.

0.2 Continuum Hypothesis and the Axiom of Choice

Definition 0.9. The continuum hypothesis (CH) says that there is no cardinality strictly
between countable and continuum. The generalized continuum hypothesis (GCH) says
that for all infinite sets S there is no cardinality strictly between card(S) and card(2%).

Definition 0.10. The Axiom of Choice states that, given any family {A4; : i € I} of
nonempty sets, there exists a function f with domain I such that (Vi € I)(f(i) € A;).



In the 1930s Godel showed that no contradiction arises if the GCH is added to ZFC, where
ZF stands for the Zermelo-Fraenkel axioms of set theory and C stands for the Axiom of Choice.
This work was complemented by Paul Cohen who proved in the 19060s that no contradiction
arises if the negation of CH is added to ZFC. Therefore the Continuum Hypothesis is inde-
pendent of ZFC.

Another interesting result of Cohen states that the Axiom of Choice is independent of ZF.

In this class we always assume the Axiom of Choice.

0.3 Cardinal numbers

Definition 0.11. A set S is said to be well-ordered if every nonempty subset of S has a
minimum.

Theorem 0.12 (Well-ordering Theorem: Cantor). Every set can be well-ordered.

The Well-ordering Theorem is equivalent to the Axiom of Choice. It is immediate that
the Axiom of Choice follows from the Well-Ordeing Theorem (why?). For the proof of the
converse, we recommend Van der Waerden’s (Modern) Algebra.

Corollary 0.13. Cardinal numbers are well-ordered.

Following Cantor, the inventor of inifinite cardinal numbers, we use the notation R, to
denote infinite cardinalities (XN is “aleph,” the first letter of the Hebrew alphabet). N is the
countable cardinality; N; is the smallest uncountable cardinality; Ny is next, etc. The CH
states that Ny is the continuum.

According to Cohen, not only is it consistent with ZFC that continuum is greater than Ny,
it is also consistent that continuum is N, where « is an ordinal number of arbitrarily large
cardinality less than continuum.

Theorem 0.14 (Cantor). If A is an infinite set then card(A x A) = card(A).

This theorem is equivalent to the Axiom of Choice.
Exercise 0.15. Prove: For cardinalities a, b the following holds: a + b = ab = max{a, b}.

Exercise 0.16. Prove: continuum x continuum = continuum, i.e. card([0,1] x [0,1]) =
card([0, 1]).

Exercise 0.17. Find a continuous function from [0, 1] onto [0, 1]2.



0.4 Chromatic number of infinite graphs

Definition 0.18. The chromatic number x(X) of an infinite graph X is defined as the mini-
mum cardinality of a set of colors required for a legal coloring.

Theorem 0.19 (Erdd8s, Hajnal). If X is not countably colorable, i.e., x(X) > Vg, then X
contains a complete bipartite subgraph K, x, for each positive integer m. In particular, X
contains a 4-cycle.

Exercise 0.20. Construct a graph H such that (Vm)(H D K, x,) but H 2 Ky, x, -

Exercise 0.21. If S is a minimal set of generators of G (i. e., no subset of S generates GG) then
x(T'(G,S)) < N.

Exercise 0.22. Construct a countable abelian group which has no minimal set of generators.
Hint. One of your most standard abelian groups will do.

Exercise 0.23. Every group has a countably colorable Cayley-graph. Hint. Read on before
solving.

Exercise 0.24. Prove that every group has a sequentially nonredundant sequence of genera-
tors, i.e., a well-ordered sequence of generators {gs : (B < a} such that for all 3, gg is not
generated by {g, : v < 5}

Exercise 0.25. Prove that if S is a sequentialy nonredundant sequence of generators, for the
group G then the Cayley graph I'(G, S) does not contain the complete bipartite graph K 17.

0.5 Ramsey Theory

Definition 0.26. We write a — (b, ¢) if any graph on a vertices contains a clique of order b
or an independent set of order c.

We can view this definition as follows. If @ — (b, ¢) then no matter how we color the edges
of K, by two colors there always will be a monochromatic subgraph K} colored by the first
color or a monochromatic subgraph K. colored by the second color.

Exercise 0.27. Prove: Xy — (Rg, ).

Surprisingly, one can two-color the edges of Kr (the complete graph on the real numbers)
such that every monochromatic complete subgraph will be countable, i.e. 8y /4 (Ry, Np).

Theorem 0.28 (Sierpinszki). continuum - (R, Xy).
Exercise 0.29. If S C R is a well-ordered set then |S] < V.

Definition 0.30. Cardinal a is weakly-inaccessible if



(1) a is a limit cardinal, i.e. it has no immediate predecessor,

(2) a cannot be written as a sum of fewer smaller cardinals.

The examples of limit cardinals include R and R, := sup{X,, : n an integer}.

Definition 0.31. Cardinal a is strongly-inaccessible if

(1) 2° < afor all b < a,

(2) as above.

By definition continuum is not strongly-inaccessible but could be weakly-inaccessible.
Exercise 0.32. Prove: If kK — (k, k) then k is weakly-inaccessible.

Exercise 0.33. If k — (k, k) then & is strongly-inaccessible. Hint. Sierpinszki’s Theorem.



