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Instructor: Laszlo Babai
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Example

π = 3 + (π − 3) (1)

π = 3 +
1
1

π−3

(2)

π = 3 +
1

7 + 1
15,99659

(3)

Continuing in this manner we can approximate π as by a continued fraction.
Terminating the continued fraction after k iterations gives us an ordinary frac-
tion, the “kth convergent.” For example the 3rd convergent of π is

3 +
1

7 + 1
15

=
333
106

=
g3

h3

Let now α ∈ R and let gk/hk be the kth convergent of α.

Exercise 1. Prove that the convergents approximate α from alternating sides.

Exercise 2. Show gkhk+1 − gk+1hk = ±1.

Exercise 3. Show that for all α ∈ R,∣∣∣∣α− gn
hn

∣∣∣∣ < 1
hnhn+1

,

where the fractions fn/gn are the convergents of α. Infer that the limit of the
convergents of α is lim

k→∞

gk
hk

= α.

Exercise 4. (Quadratic approximability) Prove that for all α ∈ R there
exist infinitely many fractions p/q such that |α− p/q| < 1/q2.

Exercise 5. Show hk increases exponentially in k.

Definition 1. A subset S of [0, 1] has (Lebesgue) measure zero if for all ε > 0,
the set S can be covered by (infinitely many) intervals of total length less than ε.
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Definition 2. Let us say that α is “good” if there exists ε > 0 such that there
exist infinitely many fractions p

q such that∣∣∣∣α− p

q

∣∣∣∣ < 1
q2+ε

.

The next exercise will show that quadratic approximation is the best we can
get for most real numbers.

Exercise 6. (Most numbers cannot be super-quadratically approxi-
mated) Show that almost all numbers are bad. (I. e., show that the set of good
numbers has measure zero.)

Definition 3. An algebraic number is an element of C which is a zero of
a (not identically zero) polynomial with integer coefficients. The degree of
the algebraic number α is the smallest degree of a polynomial with integer
coefficients of which α is a zero. A transcendental number is a number that
is not algebraic.

Exercise 7. (Liouville’s Theorem). If α is an irrational algebraic number of

degree n, then
∣∣∣∣α− p

q

∣∣∣∣ < 1
qn+1

has only a finite number of solutions (p, q).

Exercise 8. (Liouville) Prove that there exists an irrational number α such
that there exist infinitely many solutions (p, q) to the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1
qqq

.

Such an α is a “Liouville number.” Prove that there are continuum many
Liouville numbers.

Exercise 9. Prove: all Liouville numbers are transcendental.

This will complete the proof of Liouville’s celebrated result: the existence of
transcendental numbers.

Note that the same proof would work with any super-polynomially growing
f(q) in place of qq

q

. (f(q) is said to grow super-polynomially if
(∀k)(∃q0)(∀q > q0)(f(q) > qk).)

Later in the 19th century Cantor gave an alternative proof of the existence
of transcendental numbers. In contrast to Liouville, Cantor did not produce any
explicit transcendental numbers; yet he proved that the overwhelming majority
of real numbers are transcendental, by introducing the hierarchy of infinite of
cardinalities.

Exercise 10. (Cantor) Show that the set of algebraic numbers is countable,
i. e., it can be put in one-to-one correspondence with the positive integers.

Exercise 11. (Cantor) Show that the set of real numbers is not countable.
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The following result is a major improvement over Liouville’s Theorem; it
netted its author a Fields Medal.

Theorem 1. (K. F. Roth) If α is an irrational algebraic number then∣∣∣∣α− p

q

∣∣∣∣ < 1
q2+ε

has only a finite number of solutions (p, q).

Definition 1. A monic polynomial is a polynomial where the leading coef-
ficient is 1. For instance, x3 − 3x+ 4 is

Definition 2. An algebraic integer is an algebraic number which is a zero
of a monic polynomial with integer coefficients. For instance, sqrt[3]2 and the
Golden Ratio are algebraic integers, corresponding to the monic polynomials
x3 − 2 and x2 − x− 1.

Exercise 12. Show that if α is a rational algebraic integer then α is an integer.

Exercise 13. Show: the set of algebraic numbers is a field (it is closed under
addition, multiplication, and division).

Exercise 14. ∗ Show: the set of algebraic integers is a ring (it is closed under
addition and multiplication).

Exercise 15. Let φ = 1+
√

5
2 (golden ratio). Show that the continued fraction

expansion of φ is

1 +
1

1 + 1
1+...

and the convergents of this continued fraction are the quotients of consecutive
Fibonacci numbers. Show that Fn+1

Fn
→ φ.

Exercise 16. Find the continued fraction expansion of
√

2.

Exercise 17. Prove that if a continued fraction is periodic, then its limit α is
algebraic of degree 2.

Exercise 18. Find the continued fraction expansion for e.

Theorem 2. (Dirichlet)(Simultaneous diophantine approximation)
For all α1, . . . , αn ∈ R and ε > 0 there exist integers p1, . . . , pn and q < 1

εn such
that ∣∣∣∣αi − pi

q

∣∣∣∣ < ε

q
.

Exercise 19. Prove: for all α1, . . . , αn ∈ R there exist infinitely many (n+ 1)-
tuples of integers p1, . . . , pn and q 6= 0 such that∣∣∣∣αi − pi

q

∣∣∣∣ < 1
q1+1/n

.

For most n-tuples (α1, . . . , αn) of reals, degree-(1 + 1/n) approximation is the
best we can get. Formalize and prove this statement:

Exercise 20. Generalize Exercise 6 to simultaneous approximations.
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Linear Algebra review – June 23, 2003

For definitions and examples related to fields and vector spaces, see Chapter 2
(handout).

Exercise 21. Show Q[ 3
√

2] = {a+ b 3
√

2 + c 3
√

4 | a, b, c ∈ Q} is a field. What you
need to show that this set is closed under taking reciprocals.

Exercise 22. (Fundamental Inequality of Linear Algebra).
If w1, . . . , w` are linearly independent vectors in span{v1, . . . , vk} then ` ≤ k.

Exercise 23. (Modularity of dimension)

dim(U1 ∩ U2) + dim(U1 + U2) = dimU1 + dimU2 for two subspaces U1 and U2;

Exercise 24. (Submodularity of rank)

rk(S1 ∩ S2) + rk(S1 ∪ S2) ≤ rk(S1) + rk(S2) for two subsets.

Exercise 25. Prove: Given a basis b1, . . . , bn for V1 and arbitrary vectors
w1, . . . , wn ∈ V2 there exists a unique linear map f : V1 → V2 such that
f(bi) = wi for all i.
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