Discrete Math, Tenth Problem Set (July 11)

REU 2003

Instructor: Laszlo Babai
Scribe: D. Jeremy Copeland

1 Orthogonality defect

Exercise 1.1 (Hadamard inequality). Show that if $\left\{\mathbf{b}_{1}, \cdots \mathbf{b}_{n}\right\}$ is a basis of \mathbb{R}^{n}, then

$$
\left|\operatorname{det}\left(\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right)\right| \leq \prod_{i=1}^{n}\left\|\mathbf{b}_{i}\right\|
$$

Exercise 1.2. Show that in the previous exercise, there is equality if and only if the basis is orthogonal.

Definition 1.3. The orthogonality defect of a basis $\left\{\mathbf{b}_{1}, \cdots \mathbf{b}_{n}\right\}$ is defined as the quantity:

$$
\frac{\prod_{i=1}^{n}\left\|\mathbf{b}_{i}\right\|}{\left|\operatorname{det}\left(\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right)\right|}
$$

The following theorem is left as a challenge to the reader.
Theorem 1.4. Every lattice has a basis with orthogonality defect less than n^{n}.

2 Short vectors

We would like to talk about finding a short vector in a lattice. Thus we need a notion of shortness.

Definition 2.1. The infinity norm of a vector, x, with coordinates x_{i} is:

$$
\|x\|_{\infty}:=\max \left(\left|x_{i}\right|\right)
$$

Definition 2.2. The \mathbf{L}_{2} norm of a vector, x, with coordinates x_{i} is:

$$
\|x\|_{\mathrm{L}_{2}}=\|x\|_{2}:=\left(\sum x_{i}^{2}\right)^{1 / 2}
$$

Whenever we write $\|x\|$, we implicitly mean $\|x\|_{2}$. In order to move between these notions, we need the following:

Exercise 2.3.

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq n^{1 / 2}\|x\|_{\infty}
$$

Definition 2.4. Let ω_{n} denote the volume of the unit ball in \mathbb{R}^{n}.

Exercise ${ }^{+}$2.5.

$$
\omega_{n}=\frac{\pi^{n / 2}}{(n / 2)!},
$$

where for odd $n=2 k+1$, the value of $(n / 2)!$ is interpreted as

$$
\left(k+\frac{1}{2}\right)!=\frac{\sqrt{\pi}}{4^{k}} \cdot \frac{(2 k+1)!}{k!} .
$$

Exercise 2.6. Prove that Stirling's formula extends to the factorials of half-integers:

$$
\left(\frac{n}{2}\right)!\sim\left(\frac{n}{2 \mathrm{e}}\right)^{n / 2} \sqrt{\pi n} .
$$

Exercise 2.7. Prove: $\quad \omega_{n}^{1 / n} \sim \sqrt{2 \pi \mathrm{e} / n}$.

The factorial function is extended to all complex numbers except the negative integers by the Gamma function defined by

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} d t
$$

This function is related to factorials (including the factorial of half-integers as defined above) by the identity $x!=\Gamma(x+1)$. Stirling's formula holds for positive real values $x \rightarrow \infty$:

$$
\Gamma(x+1) \sim(x / \mathrm{e})^{x} \sqrt{2 \pi x} .
$$

The Gamma function satisfies the identity $\Gamma(z+1)=z \Gamma(z)$ and $\Gamma(3 / 2)=(1 / 2)!=\sqrt{\pi} / 2$.
Exercise 2.8. From the value given for $\Gamma(3 / 2)$ and the identity $\Gamma(z+1)=z \Gamma(z)$, deduce the value given above for the factorials of half-integers.

Check out "Eric Weisstein's world of mathematics" about the amazing world of the Gamma function at http://mathworld.wolfram.com/GammaFunction.html.

Applying Minkowski's theorem to spheres and cubes centered around the origin gives the following two theorems:

Theorem 2.9. Let L be a lattice, and let $\Delta=|\operatorname{det}(L)|$ be the volume of a fundamental parallelepiped. Then there exists a nonzero element $x \in L$ such that

$$
\|x\| \leq \frac{2}{\omega_{n}^{1 / n}} \Delta^{1 / n}
$$

Note that the right-hand side is asymptotically $c \sqrt{n} \Delta^{1 / n}$, where $c=\sqrt{2 / \pi \mathrm{e}}$.
Theorem 2.10. With the notation as in the previous theorem, there exists a nonzero element $x \in L$ such that $\|x\|_{\infty} \leq \Delta^{1 / n}$.

Theorem 2.11. If $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a Lovasz-reduced basis, then

- (a) $\left\|\mathbf{b}_{1}\right\| \leq 2^{(n-1) / 2} \min (L)$
- (b) $\left\|\mathbf{b}_{1}\right\| \leq 2^{n(n-1) / 4} \Delta^{1 / n}$
- (c) $\left\|\mathbf{b}_{1}\right\| \cdots\left\|\mathbf{b}_{n}\right\| \leq 2^{n(n-1) / 4} \Delta$.

This theorem follows from the following lemma and the defining properties of Lovasz reduced bases.

Lemma 2.12. If $\left(\mathbf{b}_{1}, \cdots \mathbf{b}_{n}\right)$ is a Lovasz reduced basis, then $\left\|\mathbf{b}_{i}\right\| \leq 2^{(i-1) / 2}\left\|\mathbf{b}_{i}^{*}\right\|$.
Exercise 2.13. Prove the Lemma and the Theorem. Hint. Simple claculation using the defining properties of a Lovasz-reduced basis.

Remark 2.14. Δ can be defined for a lattice not of full rank, since the fundamental parallelpiped has an n-dimensional volume even if it resides in \mathbb{R}^{m} for some $m \geq n$. Recall that $\Delta=\sqrt{\operatorname{det} G\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)}$, where G is the Gram matrix (see handout, section on Euclidean spaces).

3 Application: polynomial time algorithm for Simultaneous Diophantine Approximation

Throughout this section, let $\alpha=\left(\alpha_{1}, \cdots \alpha_{n}\right)$ be a vector in \mathbb{Q}^{n}, and let $\epsilon>0$ be a real number. We would like to find integers $q>0, p_{1}, \ldots, p_{n}$ such that

$$
\left|q \alpha_{i}-p_{i}\right|<\epsilon
$$

for all i, and q is relatively small, say $q \leq Q$ for a given value Q.
The question is, for what Q can we

- guarantee that there exists a solution;
- find a solution in polynomial time?

Dirichlet's Theorem provides an answer to the existence question:
Theorem 3.1 (Dirichlet). There exists a solution to the above problem with $Q=\epsilon^{-n}$.
Recall our second proof of Dirichlet's theorem which used Minkowski's theorem. We examined the matrix:

$$
\left[\begin{array}{ccccc}
-1 & 0 & \ldots & 0 & \alpha_{1} \\
0 & -1 & & & \vdots \\
\vdots & & \ddots & & \alpha_{n-1} \\
0 & & & -1 & \alpha_{n} \\
0 & \ldots & 0 & 0 & \epsilon / Q
\end{array}\right]
$$

We took integer linear combinations of the columns with coefficients $\left\{p_{1} \cdots p_{n+1}\right\}$, with $\sum p_{i} \mathbf{b}_{i}=x$, and $\|x\|_{\infty} \leq \epsilon$. Setting $p_{n+1}=q$, we get the desired result. The question now is for what value of Q can we construct such a vector (not just guarantee its existence).

From part (b) of Theorem 2.11, we can find a Lovasz-reduced basis for the lattice spanned by the columns of this matrix, and that gives a vector x, such that

$$
\|x\|_{\infty} \leq\|x\| \leq 2^{n / 4} \Delta^{1 /(n+1)} \leq 2^{n / 4}\left(\frac{\epsilon}{Q}\right)^{1 /(n+1)}
$$

For this to be less than ϵ, we want

$$
Q=\frac{2^{n(n+1) / 4}}{\epsilon^{n}}
$$

So for this value of Q, Lovasz's Lattice Reduction algorithm finds a solution in polynomial time.

4 Application: integer relations between real numbers

Exercise 4.1. Let $a=2 \mathrm{e}+\pi, b=\mathrm{e}+3 \pi$, and $c=2 \mathrm{e}-5 \pi$. Find small integers k, ℓ, m, not all zero, such that $k a+\ell b+m c=0$. Hint. Treat e, π as abstract symbols).

Exercise 4.2. Find the "smallest" such coefficient triple in ℓ_{2} and in ℓ_{∞}-norms.

More generally, given real numbers α_{j}, we need integers p_{i}, not all zero, such that $\left|\sum p_{i}\right|<$ ϵ. What we would like to know is for what Q, can we find such integers, p_{i}, such that $p_{i}<Q$? To this end, we construct the following matrix:

$$
\left[\begin{array}{ccc}
\alpha_{1} & \cdots & \alpha_{n} \\
\epsilon / Q & & 0 \\
& \ddots & \\
0 & & \epsilon / Q
\end{array}\right]
$$

(Notice that this is not a square matrix.) Now we would like a vector x, such that $x=$ $\sum p_{i} \mathbf{b}_{i}$ and $\|x\|_{\infty} \leq \epsilon$. Such a vector with repsect to this matrix would be a solution to our problem. Again applying part b of Theorem 2.11, we know that

$$
\|x\|_{\infty} \leq\|x\| \leq 2^{n / 4} \Delta^{1 /(n+1)}
$$

Now we need only compute Δ, and solve $2^{n / 4} \Delta^{1 /(n+1)}=\epsilon$ for Q. Recall that we can compute Δ using the Gram matrix, $\Delta^{2}=\operatorname{det}\left(A^{T} A\right)$.

Exercise 4.3. Let A be the matrix:

$$
\left[\begin{array}{ccc}
\alpha_{1} & \cdots & \alpha_{n} \\
\beta & & 0 \\
& \ddots & \\
0 & & \beta
\end{array}\right]
$$

and show that $\Delta=|\beta|^{n-1} \sqrt{\beta^{2}+\sum \alpha_{i}^{2}}$.
Exercise 4.4. Find the appropriate Q for the above example.

5 Factoring polynomials

Definition 5.1. If $f \in \mathbb{Z}[x]$, we let the norm of f be the norm of the vector of its coefficients. That is,

$$
\left\|x \mapsto a x^{2}+b x+c\right\|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

Exercise 5.2 (Mignotte's Lemma). If $g, f \in \mathbb{Z}[x]$, and $g \mid f$, then $\|g\| \leq 2^{\operatorname{deg}(g)}\|f\|$.

