next up previous
Next: Factoring polynomials Up: Discrete Math, Tenth Problem Previous: Application: polynomial time algorithm

Application: integer relations between real numbers


\begin{exercise}
% latex2html id marker 929Let $a=2\mathrm{e}+\pi$, $b=\mathrm...
...0$. {\em Hint.}\ Treat $\mathrm{e}$, $\pi$\ as abstract symbols).
\end{exercise}


\begin{exercise}
% latex2html id marker 935Find the \lq\lq smallest'' such coefficient triple in $\ell_2$\ and
in $\ell_{\infty}$-norms.
\end{exercise}

More generally, given real numbers $ \alpha_j$, we need integers $ p_i$, not all zero, such that $ \vert\sum p_i\vert<\epsilon$. What we would like to know is for what $ Q$, can we find such integers, $ p_i$, such that $ p_i<Q$? To this end, we construct the following matrix:

\begin{displaymath}
% latex2html id marker 1726\left[
\begin{array}{ccccc}
\a...
...\
& \ddots & \\
0 & & \epsilon/Q \\
\end{array}\right]
\end{displaymath}

(Notice that this is not a square matrix.) Now we would like a vector $ x$, such that $ x=\sum p_i{\mathbf{b}}_i$ and $ \Vert x\Vert _\infty\leq \epsilon$. Such a vector with repsect to this matrix would be a solution to our problem. Again applying part b of Theorem 2.11, we know that

$\displaystyle \Vert x\Vert _\infty\leq\Vert x\Vert\leq2^{n/4}\Delta^{1/(n+1)}$.$\displaystyle $

Now we need only compute $ \Delta$, and solve $ 2^{n/4}\Delta^{1/(n+1)}=\epsilon$ for $ Q$. Recall that we can compute $ \Delta$ using the Gram matrix, $ \Delta^2=$det$ (A^TA)$.

Exercise 4.1   Let $ A$ be the matrix:

\begin{displaymath}
% latex2html id marker 1751\left[
\begin{array}{ccccc}
\a...
...& 0 \\
& \ddots & \\
0 & & \beta \\
\end{array}\right]
\end{displaymath}

and show that $ \Delta=\vert\beta\vert^{n-1}\sqrt{\beta^2+\sum\alpha_i^2}$.

Exercise 4.2   Find the appropriate $ Q$ for the above example.



Varsha Dani 2003-07-25