
Discrete Math, Eleventh Problem Set (July 14)

REU 2003

Instructor: Laszlo Babai
Scribe: D. Jeremy Copeland

1 Lovász Lattice Reduction - analysis

Recall that a basis (b1, . . . ,bn) for a lattice is Lovász-reduced if it satisfies the relations:

1. |µij | ≤ 1
2 ,

2. ‖b∗i+1‖ ≥ 1√
2
‖b∗i ‖,

where b∗1, . . . ,b
∗
n is the Gram-Schmidt orthogonalized sequence and bi = b∗i =

∑
j<i µijb

∗
j . In

order to prove that Lovász’ lattice reduction algorithm terminates, we introduce the potential
function P of a basis defined as:

P = vol(b1)vol(b1b2) · · · vol(b1 · · ·bn−1) = ‖b∗1‖n−1 · · · ‖b∗n−1‖1.

We would like to show that the Lovász algorithm terminates by observing that in each
round, the potential function decreases by a factor bounded above by some constant c < 1.
Because of this, and the fact that P2 is a positive integer, we know that the algorithm must
terminate in a number of rounds logarithmic in the initial potential.

Exercise 1.1. Prove that the logarithm of the initial potential is bounded by a polynomial of
the bit-length of the input.

Recall that the “coefficient reduction” process reduces each µij to |µij | ≤ 1/2 without
affecting the orthogonalized sequence and therefore without affecting the potential function.
Once “coefficient reduction” has been performed, we check the second property. If there is
some i with ‖b∗i+1‖ < 1√

2
‖b∗i ‖, we simply swap these two elements. This will change the

orthogonalized vectors b∗i and b∗i+1, but the potential is only affected by:

Pnew

Pold
=
‖(b∗i)new‖
‖(b∗i)old‖

1

Next we project along the direction of Ui−1 = Span{b1 · · ·bi−1}. After this projection, the
vectors b1 · · ·bi−1 are taken to the zero vector. Denote the projection by x 7→ x′. Now
examining V = Span{b′i,b′i+1} = Span{b∗i ,b∗i+1}, we find that

(b′i)old = (b∗i)old

(b′i+1)old = (b∗i+1)old + µi+1,i(b∗i)old

(b′i)new = (b′i+1)old = (b∗i)new

(b′i+1)new = (b′i)old = (b∗i)old.

Therefore,

Pnew

Pold
=
‖(b′i)new‖
‖(b′i)old‖

Now, since µij ≤ 1/2, the projection of b′i+1 onto b∗i is prevented from being very large. The
calculation follows.

‖(b′i)new‖2 = ‖(b′i+1)old‖2

= ‖(b∗i+1)old‖2 + µ2
i+1,i‖(b∗i)old‖2

≤
(

1
2

+
1
4

)
‖(b∗i)old‖2

≤ 3
4
‖(b′i)old‖2,

so Pnew/Pold ≤
√

3/2.

We see now that we could replace the second Lovász condition by:

(2δ) ‖b∗i+1‖ ≥ δ‖b∗i ‖,

where δ is allowed to be any number such that
√
δ2 + 1/4 < 1, so δ <

√
3/2. The running

time and quality of the output would be expected to be greater for larger values of δ.

Remark 1.2. These are the values of δ for which we know the algorithm terminates (and
specifically in polynomial time). However, it is possible for the algorithm to terminate for
special inputs and larger values of δ. (For example, an orthogonal basis and any δ would
produce an algorithm that terminates.)

Remark 1.3. Odlyzko and TeRiele used this algorithm to approximate 70 zeroes of the Rie-
mann Zeta function. In their experiments, the lattice reduction algorithm terminated rather
quickly even in the case δ =

√
3/2, even though in this case we cannot prove termination,

let alone termination in polynomial time. Moreover, this large value of δ produced outputs
of far higher quality than predicted by the analysis. This is a case in which the search for a
polynomial-time algorithm required an insight into the nature of the problem, and that insight
lead to a solution that turned out to be “unreasonably effective” in practice.

2

2 Linear programming

The objective of linear programming is to maximize a linear objective function cTx =
c1x1 + · · · + cnxn under a system of constraints of the form Ax ≤ b, where A is some fixed
k×n matrix, and b is a fixed k× 1 vector and the meaning of “≤” is the simultaneous system
of inequalities in x:

a11x1 + · · ·+ a1nxn ≤ b1
...

ak1x1 + · · ·+ aknxn ≤ bk

The objective is then to maximize, within this domain, the value of the objective function.

For example, cTx could be a profit function, and the constraints of A, b would be produc-
tion constraints.

Throughout we will use words such as “up” to denote the direction of the vector c. In this
terminology, we need to reach the apex (top vertex) of the polytope defined by the constraints
(if it has vertices).

The simplex algorithm (Dantzig, 1950) solves this problem by hopping from vertex to
neighboring vertex, always ascending in the polytope. The algorithm terminates when the
apex is reached. This algorithm is provably exponential in the worst case, yet in practice is
extremely efficient.

This situation presented one of the foremost challenges to the notion of “polynomial time
algorithms.”

The ellipsoid method (Khachiyan, 1979) was the first polynomial-time algorithm for the
linear programming problem. Basically the algorithm envelopes the polytope in an ellipsoid,
and shrinks the volume of the ellipsoid by a constant factor, at each step making certain to
still retain the topmost vertex (though the topmost vertex is unknown). While this algorithm
is polynomial time, it is not a practical method for linear programming.

Remark 2.1. The ellipsoid method also suffers from the fact that it may become unstable if
the polytope is lower dimensional, so in this case, it is important to first reduce to a hyperplane
on which the problem is “of maximal rank” then solve there. The ellipsoid method itself
pinpoints the approximate direction of a vector perpendicular to such a hyperplane; then a
simultaneous diophantine approximation of the coordinates of this approximate normal vector
results in the exact direction. This “rounding” was Lovász’ original objective in developing
the basis reduction algorithm.

Remark 2.2. An advantage that the ellipsoid method has is that, in cases where the con-
straints are implicitly defined, one only needs a separation oracle, or algorithm for deter-
mining some constraint that a point outside the polytope fails.

3

A third method to approach this problem is the interior point method of Karmarkar,
which starts from the “center” of the polytope; chooses a ball in the interior of the polytope
around the starting point, and moving up inside the ball. Then a projective transformation
is used to make it appear that the new point is in the center, and we repeat the previous
step. (Note: any interior point in a ball can be transformed into the center of the ball without
changing the shape of the ball). The result is that the point will approach the apex from inside
along a curved trajectory which is a straight line in the hyperbolic space into which the interior
of the polytope can be converted.

This, again, is a polynomial time algorithm. In contrast with the ellipsoid method, it is
also practical; for very large numbers of variables, the interior point method beats the simplex
algorithm on benchmark inputs.

3 Primality testing

The objective of primality testing is to take as input a positive integer, and return as output
a verdict whether the number is prime or composite. Only as recently as 2002 was it shown
that this age-old problem can be solved in polynomial time; the algorithm was discovered by
Manindra Agarwal, Neeraj Kayal, and Nitin Saxena (professor and two graduate students) at
the Indian Institute of Technology, Kanpur.

Euclid used the sieve of Eratosthenes to perform primality testing. In this method, one
constructs a list of the integers from 2 to N . From this list, we remove all of the multiples
of 2 on the first step. Since 3 is the smalles remaining number, it must be prime. We next
remove all multiples of 3. Now 5 is the smallest number remaining, so it is prime. Remove all
its multiples.

Remark 3.1. In order to discover all primes less than N , it is necessary to continue this
process for all primes less than

√
N (why?). Therefore, if X is a number with n digits,

X ≈ 10n, then it is necessary to sieve until 10n/2 - an exponentially long process.

If we know the primes up to 10n/2, then we need only π(10n/2) = #{primes p < 10N/2}
trial divisions. How much of a savings is this? To estimate this, we need the celebrated

Theorem 3.2 (Prime Number Theorem). π(x) ∼ x/ lnx.

Remark 3.3. The error in this approximation is π(x) = x/ lnx+O(x
(lnx)2).

Remark 3.4. A better approximation is π(x) = li(x) + O(x1−ε) for some constant ε > 0,
where

li(x) =
∫ x

t=2

dt
ln t

.

This expression as a good approximation of π(x) was conjectured by Gauss. li is called the
logarithmic integral.

4

Remark 3.5. It is believed - and in fact is equivalent to the Riemann Hypothesis - that the
error in the logarithmic integral expression is of the order of

√
x: π(x) = li(x) +O(

√
x).

Remark 3.6. With regard to the sieve of Eratosthenes, notice that

π(10n/2) ∼ 10n/2
n
2 ln 10

,

which for large enough n, is larger than 9.9n/2. Thus we still have exponential complexity.

We shall present two randomized (“Monte Carlo”) algorithms. These algorithms have two
possible outputs:

1. “Composite” with a proof of compositeness.

2. “Prime.”

In case “Composite” is returned, we know that the number is composite, because a proof of
compositeness is produced. However, in the case the output is “Prime,” this is only a guess. It is
possible, although unlikely, that on composite input, the algorithm returns “prime.” The prob-
ability of this happening is less than a predetermined ε > 0, and it is not unreasonable to ask ε
to be less than 1/21500, which error is less than 1/(number of particles in the known universe).

Remark 3.7. It is often said that a number X deemed to be prime through this process is
“very likely prime.” This statement, however, does not make sense. X is not chosen at random,
it is given explicitly. Therefore either X is prime, or it is not, it cannot have a probability
of being prime. Our verdict, however, is probabilistic; with certain probability we say “X is
prime” and otherwise we say “X is composite.” If X is prime, we shall always say so, so in this
case the chance that we make an error is zero. If X is composite, then we may accidentally
declare that X is prime, but the probability of this happening is < ε. So overall, the probability
that our verdict is in error is < ε.

Our first tool is Fermat’s little Theorem.

Theorem 3.8 (Fermat’s little theorem). If p is a prime, and gcd(p, a) = 1, then ap−1 ≡ 1
mod p.

Definition 3.9. A Fermat witness of compositeness of x is a number a such that 1 ≤ a ≤
x− 1 such that

1. gcd(a, x) 6= 1, or

2. gcd(a, x) = 1 and ax−1 6≡ 1 mod x.

Remark 3.10. Notice that in the second case, we do not find any factor of x though we do
have a proof that it is composite using the contrapositve of Fermat’s little theorem.

5

Unfortunately, this won’t quite work as a basis for a primality test, because of the following:

Definition 3.11. x is a Carmichael number if x is odd, not prime, but for all a with
gcd(a, x) = 1, ax−1 ≡ 1 mod x.

Carmichael numbers are rare, but it has been proved recently that there are infinitely many
of them (Alford, Granville, Pomerance, 1994).

Exercise 3.12. Show that if x = pq is the product of two primes, then x is not a Carmichael
number.

Exercise 3.13. Prove that x = pqr is a Carmichael number if and only if (p − 1) | qr − 1,
(q − 1) | rp− 1, and (r − 1) | pq − 1.

Exercise 3.14. Show that the following numbers are Carmichael: 561 (3 · 11 · 17), 1105 (5 ·
13 · 17), 1729 (7 · 13 · 19), 2465 (5 · 17 · 19), 2821 (7 · 13 · 31), 6601 (7 · 23 · 41), 8911 (7 · 19 · 67),
10585 (5 · 29 · 73). (Note: these are the eight smallest Carmichael numbers.)

Exercise 3.15. Prove: if n = 3pq is a Carmichael number where p, q are primes then n = 561.

Exercise 3.16. Prove: if n = (6k+1)(12k+1)(18k+1) and each of the three factors is prime
then n is a Carmichael number (Korselt, 1899). (Note that for k = 1 we obtain 1729; the next
case is k = 6.)

Exercise 3.17. Prove that all Carmichael numbers are square free. (A number is square free
if it is not divisible by the square of any prime.) Hint. Use the fact that the multiplicative
group of mod p2 residue classes relatively prime to p is cyclic, i. e., that there exists a number
a, relatively prime to p, such that aj 6≡ 1 (mod p2) for any j, 1 ≤ j < p2 − p.

The next exercise shows how to find a witness of compositeness if the input number is not
Carmichael.

Exercise 3.18. Prove that if x is composite and not Carmichael, then the probability that a
random a is a Fermat witness is at least 1/2.

6

