next up previous
Next: Lovász Toggle Up: Discrete Math, Thirteenth Problem Previous: Solovay-Strassen primality testing algorithm

Rabin-Miller primality testing algorithm


\begin{exercise}
% latex2html id marker 972Let $p$\ be a prime. Suppose that $a^{2t}\equiv 1\pmod{p}$.
Then $a^t\equiv \pm 1\pmod{p}$.
\end{exercise}

The Miller-Rabin algorithm works as follows on input $ N$. We assume $ N$ is a positive odd integer.


\begin{exercise}
% latex2html id marker 974Show that if $N$\ is an odd composi...
... fact at least half of
$a\in{\mathbb{Z}}_N^*$\ cause this output.
\end{exercise}



Varsha Dani 2003-07-25