
Discrete Math, Fourteenth Problem Set (July 18)

REU 2003

Instructor: László Babai
Scribe: Ivona Bezakova

0.1 Repeated Squaring

For the primality test we need to compute aX−1 (mod X). There are two problems with the
straightforward method (multiplying X − 1 copies of a and reducing modulo X). First, the
resulting number aX−1 has exponentially many digits (nearly 2n binary digits if X has n binary
digits and a = 2). The space requirement can be reduced to linear in the bit-length of the input
by doing all operations modulo X. Second, an exponential number of modular multiplications
is needed, namely X − 2 ≈ 2n. We can reduce this number to ≈ n by “repeated squaring” –
see the “Pseudocodes for basic algorithms in Number Theory” handout.

0.2 Factoring of integers

Given a number X we want to find its prime factors. The “trial division” method tests all
integers up to

√
X, requiring ≈ 2n/2 trials where n is the bit-length of X. Several factoring

algorithms are known which run in time 2c
√
n logn. While this is still very far from polynomial

time, it is significantly better than trial division. We shall see the idea.

Remark 0.1. The best factoring algorithm known, called the number field sieve, runs in
time 2c

3
√
n log2 n [Lenstra, Lenstra, Manasse and Pollard (1990)]. This statement is based on

some plausible but unproven number theoretic assumptions (“heuristic analysis”). Given the
significance of factoring integers, efficient factoring algorithms are of great interest even if we
cannot rigorously prove their efficiency. Dixon’s remains the only factoring algorithm with a
fully proven 2c

√
n logn upper bound on its running time.

0.3 Types of randomized algorithms

A Las Vegas algorithm is an algorithm that runs in polynomial time and produces an answer
with probability ≥ 1/2; alternatively, it may say “don’t know.” Whenever an answer is pro-
duced, it is guaranteed to be correct. By repeating the algorithm k times using independent
coin flips, the probability of not getting an answer is reduced to 1/2k.

1

A Monte Carlo algorithm with one-sided error runs in polynomial time and it produces a
correct answer with probability ≥ 1/2. The primality tests discussed in the previous class are
examples of Monte Carlo algorithms with one-sided error, i. e., the answer “X is composite” is
always correct but “X is prime” may be an incorrect answer; the probability that a composite
X is misclassified as prime is less than 1/2k (after k repetitions).

0.4 Representing a prime as a sum of two squares

We proved in this class that if p is aq prime and p ≡ 1 (mod 4) then there exist integers a, b
such that p = a2 + b2. The goal is to find such a and b in polynomial time (i. e., in time
(log p)O(1)).

Rabin and Shallit showed that we can find a, b in randomized polynomial time (a Las
Vegas algorithm). As a subroutine, they need to factor polynomials in Fp. This can be done
in randomized polynomial time using a Las Vegas algorithm by Berlekamp. (Polynomial-time
factoring of polynomials over Q is a consequence of the lattice basis reduction algorithm. This
algorithm does not work for factoring over Fp and no deterministic polynomial-time algorithm
is known for this case.)

How can we guarantee that a factoring is correct? By multiplying the factors we can verify
that the product equals the input polynomial. But we also need to test that the factors are
irreducible. Indeed, we have a deterministic test for irreducibility of polynomials over Fp.

0.5 Deterministic test of irreducibility of polynomials over Fp

Let f(x) ∈ Fp[x] be a polynomial over Fp. We say that f is irreducible if there do not exist
polynomials g, h of lower degree than f such that f ≡ gh (mod p).

Let F ⊇ Fp be the algebraic closure of Fp. Let α ∈ F be a root of f , i.e. f(α) = 0. If f is
an irreducible polynomial of degree k then Fp[α] = Fpk .

“Fermat’s Little Theorem for Fpk” states that for all α ∈ Fpk , if α 6= 0 then αp
k−1 = 1

(equality in the field Fpk). Therefore x−α divides g.c.d. (f, xp
k−1−1) and since f is irreducible,

this implies that f divides xp
k−1 − 1. Moreover, f does not divide xp

`−1 − 1 for any ` < k.

Exercise 0.2. Let f ∈ Fp[x] be a polynomial of degree k. Prove that f is irreducible if and
only if both of the following conditions hold:

1. f |xpk−1 − 1;

2. (∀` < k)(f - xp
`−1 − 1).

Remark 0.3. Above we sketched the “only if” part.

2

Exercise 0.4. Given a polynomial f ∈ Fp[x] and t ≤ 2n, compute g.c.d. (f, xt − 1) in time
polynomial in n, log p, and the degree of f . Hint. Compute repeated squares x, x2, x4, . . .
(mod f).

Combining the preceding two exercises we obtain a polynomial time algorithm for testing
irreducibility of polynomials over Fp.

0.6 Las Vegas factoring of quadratic polynomials over Fp

Let f ∈ Fp[x] be a quadratic polynomial. We want to factor f over Fp. First we test whether f is
irreducible; if so, we are done. Otherwise we know that f can be factored as f(x) = (x−a)(x−b)
where a, b ∈ Fp. We want to find a and b.

Definition 0.5. We say that a polynomial g splits polynomial f if 1 6= g.c.d. (f, g) 6= f .

It suffices to find a polynomial that splits f .

If a = b then f ′ splits f . So if f ′ does not split f then we know that a 6= b. We may also
assume that ab 6= 0 (why?)

Exercise 0.6. Prove: the roots of the polynomial x(p−1)/2 − 1 are exactly the quadratic

residues mod p. (Note: we used this fact in proving that
(
−1
p

)
= (−1)(p−1)/2; and this

fact in turn was one of the chief ingredients of our proof that primes ≡ 1 (mod 4) can be
written as the sum of two squares.)

We start with an easy case. Suppose
(
a

p

)
6=
(
b

p

)
. In this case, according to the preceding

exercise, x(p−1)/2 − 1 splits f .

If now
(
a

p

)
=
(
b

p

)
, our next trick is to consider the polynomials gr(x) = f(x+ r). Ideally,

we want to find r such that
(
a− r
p

)
6=
(
b− r
p

)
. Then x(p−1)/2 − 1 splits gr and therefore we

can factor f . The next exercise shows that we have an excellent chance of finding r by just
picking it at random.

Exercise 0.7. Prove: For a random r ∈ Fp the probability P
((

a− r
p

)
6=
(
b− r
p

))
≈ 1/2.

Exercise+ 0.8. Generalize the algorithm to factoring polynomials of arbitrary degree over Fp
into their irreducible factors.

3

0.7 Back to the p = a2 + b2 problem

In this section we describe the Rabin–Shallit polynomial-time Las Vegas algorithm to represent
a given prime of the form 4k + 1 as the sum of two squares.

We know that −1 is a quadratic residue in Fp for p ≡ 1 (mod 4), i.e. there exists t such
that t2 ≡ −1 (mod p). Our first task is to find such t? This is equivalent to factoring the
polynomial x2 + 1 = (x+ t)(x− t) = x2 − t2 ∈ Fp[x].

Definition 0.9. The domain of Gaussian integers is defined as Z[i] = {a+ bi : a, b ∈ Z}.

Divisibility, primes, g.c.d. are defined among Gaussian integers the same way as among
integers. (Recall: by definition, the greatest common divisor is not “largest” among the
common divisors but one that is a common multiple of all common divisors. So its existence
is not evident.)

There are four units (numbers dividing 1) among Gaussian integers, 1,−1, i, and −i. Let
us take a look at Gaussian primes. 2 and 5 are not primes in Z[i] (because 5 = (2 + i)(2− i))
but 3 remains a prime.

Exercise 0.10. For z = a+ bi, let N(z) = a2 + b2 (the “norm” of z). Note that N(z) = |z|2.
Prove: N(zw) = N(z)N(w).

Exercise 0.11. Prove: if z, w ∈ Z[i] and w | z then N(w) | N(z).

Exercise 0.12. Prove that if p is a prime number (in Z) and p ≡ −1 (mod 4) then p is a
prime in Z[x].

Exercise 0.13. If p is a prime number (in Z) and p ≡ 1 (mod 4) then p = a2 + b2 = (a +
bi)(a− bi). Prove: a+ bi is prime in Z[i] (as is a− bi). Hint. Suppose c+ di | a+ bi. Compare
their norms.

Exercise 0.14. Prove that Euclid’s algorithm works in Z[i]. (The remainder must have
smaller norm than the divisor.) It follows that for z, w ∈ Z[i], g.c.d.(z, w) exists and is a
linear combination of z and w with coefficients from Z[i].

Corollary 0.15. Every Gaussian integer has unique prime factorization in Z[i] (unique apart
from order and units). (Prove!)

The algorithm

Let p ≡ 1 (mod 4). By factoring the polynomial x2 + 1 over Fp, we found, in Las Vegas
polynomial time, and integer t such that p | t2 +1. Now t2 +1 = (t+ i)(t− i). Since p = a2 +b2

(a, b unknown) and a+ bi is a prime in Z[i], it follows that a+ bi divides either t+ i or t− i
(but not both – why?). Therefore t + i splits p: if a + bi | t + i then a + bi = g.c.d. (t + i, p).
Otherwise, a− bi = g.c.d. (t+ i, p). In either case, we find a, b using Euclid’s algorithm in Z[i].

Exercise+ 0.16. Give an alternative proof of the theorem that primes ≡ 1 (mod 4) can be
written as the sum of two squares. Use Gaussian integers.

4

0.8 Factoring integers in time, exponential in
√
n log n

J. Dixon was the first to show that n-digit integers can be factored in ec
√
n logn steps. Let X

be an n-digit integer (X ≈ 2n) which we want to factor.

Definition 0.17. We say that z is a v-smooth integer if all primes dividing z are ≤ v.

Suppose we can find a, b such that a2 ≡ b2 (mod X) and a 6≡ ±b (mod X). Then X divides
(a+ b)(a− b) and a+ b splits X.

Exercise 0.18. If X is odd and not a prime power then there exist a, b such that a2 ≡ b2

(mod X) and a 6≡ ±b (mod X).

How do we find such a and b? Let v be a threshold number v = 2
√
n logn and let P =

{p is a prime : p ≤ v}. Let ri ∈ {1, . . . , X} be a random number. Let si = (r2
i mod X). If si

is not v-smooth, discard it and try again. Let N = |P |. Keep generating the ri until N + 1
smooth numbers si are found.

Suppose si = p
αi1
1 . . . p

αiN
N (mod X) where P = {p1, . . . , pN}.

Consider the matrix 
α1,1 α1,2 . . . α1,N

α2,1 α2,2 . . . α2,N
...

...
. . .

...
αN+1,1 αN+1,2 . . . αN+1,N


Since this matrix is (N + 1) × N , its rows are linearly dependent (mod 2). Therefore there
exists a nonempty set S ⊆ {1, . . . , N} such that (∀j)(

∑
i∈S αij = 2βj). Thus

∏
i∈S

r2
i ≡

N∏
j=1

p
2βj
j (mod X)

Let a :=
∏
i∈S ri mod X and b :=

∏N
j=1 p

βj
j mod X. Now a2 ≡ b2 (mod X).

There are two catches in this sketch. First, the smooth numbers have to happen sufficiently
frequently. Second, the probability of a 6≡ ±b (mod X) must be significant.

The second claim seems more plausible and can be proven by using a clever counting
argument. Here we present intuition behind the first claim.

Let ψ(X, v) be the number of v-smooth numbers less than X. Let k =
√
n/ log n, i.e.

vk ≈ X. Clearly, ψ(vk, v) ≥
(π(v)
k

)
> (π(v)/k)k (the product of any k primes ≤ v is smooth).

What is the probability that a random number is smooth?

ψ(vk, v)
vk

≥
(
π(v)
k

)k 1
vk
∼

(
c√

n log n
1√

n/ log n

)√n/ logn

= (c/n)
√
n/ logn ≥ c

√
n logn

1 .

5

Thus, the expected number of trials to find a random smooth number is less than (1/c1)
√
n logn.

Note, however, that the si are not generated uniformly at random, so the actual proof is
necessarily more delicate. But it uses the same simple lower bound on ψ(vk, v).

6

