next up previous
Next: Las Vegas factoring of Up: Discrete Math, Fourteenth Problem Previous: Representing a prime as

Deterministic test of irreducibility of polynomials over $ {\mathbb{F}}_p$

Let $ f(x)\in {\mathbb{F}}_p[x]$ be a polynomial over $ {\mathbb{F}}_p$. We say that $ f$ is irreducible if there do not exist polynomials $ g,h$ of lower degree than $ f$ such that $ f \equiv gh \pmod p$.

Let $ \mathcal{F}\supseteq {\mathbb{F}}_p$ be the algebraic closure of $ {\mathbb{F}}_p$. Let $ \alpha \in \mathcal{F}$ be a root of $ f$, i.e. $ f(\alpha) = 0$. If $ f$ is an irreducible polynomial of degree $ k$ then $ {\mathbb{F}}_p[\alpha] = {\mathbb{F}}_{p^k}$.

``Fermat's Little Theorem for $ {\mathbb{F}}_{p^k}$'' states that for all $ \alpha\in{\mathbb{F}}_{p^k}$, if $ \alpha\neq 0$ then $ \alpha^{p^k-1}=1$ (equality in the field $ {\mathbb{F}}_{p^k}$). Therefore $ x-\alpha$ divides % latex2html id marker 2029
$ \mathop{\rm g.c.d.\,}\nolimits (f,x^{p^k-1}-1)$ and since $ f$ is irreducible, this implies that $ f$ divides $ x^{p^k-1}-1$. Moreover, $ f$ does not divide $ x^{p^{\ell}-1}-1$ for any $ \ell<k$.


\begin{exercise}
% latex2html id marker 835Let $f \in F_p[x]$\ be a polynomial...
...m $(\forall \ell<k) (f\,\nmid\,x^{p^{\ell}-1}-1)$.
\end{enumerate}\end{exercise}

Remark 0.2   Above we sketched the ``only if'' part.


\begin{exercise}
% latex2html id marker 838Given a polynomial $f\in F_p[x]$\ a...
...{\em Hint.} Compute repeated squares $x, x^2, x^4,\dots \pmod f$.
\end{exercise}

Combining the preceding two exercises we obtain a polynomial time algorithm for testing irreducibility of polynomials over $ {\mathbb{F}}_p$.



Varsha Dani 2003-07-25