next up previous
Next: About this document ... Up: Discrete Math, Fourteenth Problem Previous: Back to the problem

Factoring integers in time, exponential in $ \sqrt{n\log n}$

J. Dixon was the first to show that $ n$-digit integers can be factored in $ e^{c\sqrt{n\log n}}$ steps. Let $ X$ be an $ n$-digit integer ( $ X\approx 2^n$) which we want to factor.

Definition 0.6   We say that $ z$ is a $ v$-smooth integer if all primes dividing $ z$ are $ \le v$.

Suppose we can find $ a,b$ such that $ a^2 \equiv b^2 \pmod X$ and $ a\not\equiv \pm b \pmod X$. Then $ X$ divides $ (a+b)(a-b)$ and $ a+b$ splits $ X$.


\begin{exercise}
% latex2html id marker 948If $X$\ is odd and not a prime powe...
...ch that
$a^2\equiv b^2 \pmod X$\ and $a\not\equiv \pm b \pmod X$.
\end{exercise}

How do we find such $ a$ and $ b$? Let $ v$ be a threshold number $ v =2^{\sqrt{n \log n}}$ and let % latex2html id marker 2239
$ P =
\{p~{\rm is~a~prime}~\colon~ p\le v\}$. Let $ r_i\in\{1,\dots,X\}$ be a random number. Let $ s_i = (r_i^2 \bmod X)$. If $ s_i$ is not $ v$-smooth, discard it and try again. Let $ N=\vert P\vert$. Keep generating the $ r_i$ until $ N+1$ smooth numbers $ s_i$ are found.

Suppose $ s_i = p_1^{\alpha_{i_1}}\dots p_N^{\alpha_{i_N}}
\pmod X$ where $ P = \{p_1,\dots,p_N\}$.

Consider the matrix

% latex2html id marker 2261
$\displaystyle \begin{pmatrix}
\alpha_{1,1} & \alpha...
...ots \\
\alpha_{N+1,1} & \alpha_{N+1,2} & \dots & \alpha_{N+1,N}
\end{pmatrix}$

Since this matrix is $ (N+1)\times N$, its rows are linearly dependent $ \pmod 2$. Therefore there exists a nonempty set $ S\subseteq\{1,\dots,N\}$ such that $ (\forall j) (\sum_{i\in S}\alpha_{ij} = 2\beta_j)$. Thus

$\displaystyle \prod_{i\in S}r_i^2 \equiv \prod_{j=1}^N p_j^{2\beta_j} \pmod X$

Let $ a:=\prod_{i\in S}r_i \bmod X$ and $ b:=\prod_{j=1}^N
p_j^{\beta_j} \bmod X$. Now $ a^2 \equiv b^2 \pmod X$.

There are two catches in this sketch. First, the smooth numbers have to happen sufficiently frequently. Second, the probability of $ a\not\equiv \pm b \pmod X$ must be significant.

The second claim seems more plausible and can be proven by using a clever counting argument. Here we present intuition behind the first claim.

Let $ \psi(X,v)$ be the number of $ v$-smooth numbers less than $ X$. Let $ k=\sqrt{n/\log n}$, i.e. $ v^k\approx X$. Clearly, $ \psi(v^k,v)\geq \binom{\pi(v)}{k}>(\pi(v)/k)^k$ (the product of any $ k$ primes $ \le v$ is smooth). What is the probability that a random number is smooth?

$\displaystyle \frac{\psi(v^k,v)}{v^k} \geq
\left(\frac{\pi(v)}{k}\right)^k\frac...
...right)^{\sqrt{n/\log n}}
= (c/n)^{\sqrt{n/\log n}} \geq c_1^{\sqrt{n \log n}}.
$

Thus, the expected number of trials to find a random smooth number is less than $ (1/c_1)^{\sqrt{n\log n}}$. Note, however, that the $ s_i$ are not generated uniformly at random, so the actual proof is necessarily more delicate. But it uses the same simple lower bound on $ \psi(v^k,v)$.
next up previous
Next: About this document ... Up: Discrete Math, Fourteenth Problem Previous: Back to the problem
Varsha Dani 2003-07-25